ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating Einstein-Podolsky-Rosen steering of continuous variable bipartite states by non-Gaussian pseudospin measurements

140   0   0.0 ( 0 )
 نشر من قبل Gerardo Adesso
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

EPR steering is an asymmetric form of correlations which is intermediate between quantum entanglement and Bell nonlocality, and can be exploited for quantum communication with one untrusted party. In particular, steering of continuous variable Gaussian states has been extensively studied as a manifestation of the EPR paradox. While most of these studies focused on quadrature measurements for steering detection, two recent works revealed that there exist Gaussian states which are only steerable by non-Gaussian measurements. In this paper we perform a systematic investigation of EPR steering of bipartite Gaussian states by pseudospin measurements, complementing and extending previous findings. We first derive the density matrix elements of two-mode squeezed thermal states in the Fock basis, which may be of independent interest. We then use such a representation to investigate steering of these states as detected by a nonlinear criterion, based on second moments of the pseudospin correlation matrix. This analysis reveals previously unexplored regimes where non-Gaussian measurements are more effective than Gaussian ones to witness steering of Gaussian states in the presence of local noise. We further consider an alternative set of pseudospin observables, whose expectation value can be expressed compactly in terms of Wigner functions for all two-mode Gaussian states. However, according to the adopted criterion, these observables are found to be always less sensitive than Gaussian observables for steering detection. Finally, we investigate continuous variable Werner states, which are non-Gaussian mixtures of Gaussian states, and find that pseudospin measurements are always more effective than Gaussian ones to reveal their steerability. Our results provide useful insights on the role of non-Gaussian measurements in characterizing quantum correlations of Gaussian and non-Gaussian states.



قيم البحث

اقرأ أيضاً

Einstein-Podolsky-Rosen (EPR) steering is a form of bipartite quantum correlation that is intermediate between entanglement and Bell nonlocality. It allows for entanglement certification when the measurements performed by one of the parties are not c haracterised (or are untrusted) and has applications in quantum key distribution. Despite its foundational and applied importance, EPR steering lacks a quantitative assessment. Here we propose a way of quantifying this phenomenon and use it to study the steerability of several quantum states. In particular we show that every pure entangled state is maximally steerable, the projector onto the anti-symmetric subspace is maximally steerable for all dimensions, we provide a new example of one-way steering, and give strong support that states with positive-partial-transposition are not steerable.
We present an experimentally practical method to reveal Einstein-Podolsky-Rosen steering in non-Gaussian spin states by exploiting a connection to quantum metrology. Our criterion is based on the quantum Fisher information, and uses bounds derived fr om generalized spin-squeezing parameters that involve measurements of higher-order moments. This leads us to introduce the concept of conditional spin-squeezing parameters, which quantify the metrological advantage provided by conditional states, as well as detect the presence of an EPR paradox.
Understanding how quantum resources can be quantified and distributed over many parties has profound applications in quantum communication. As one of the most intriguing features of quantum mechanics, Einstein-Podolsky-Rosen (EPR) steering is a usefu l resource for secure quantum networks. By reconstructing the covariance matrix of a continuous variable four-mode square Gaussian cluster state subject to asymmetric loss, we quantify the amount of bipartite steering with a variable number of modes per party, and verify recently introduced monogamy relations for Gaussian steerability, which establish quantitative constraints on the security of information shared among different parties. We observe a very rich structure for the steering distribution, and demonstrate one-way EPR steering of the cluster state under Gaussian measurements, as well as one-to-multi-mode steering. Our experiment paves the way for exploiting EPR steering in Gaussian cluster states as a valuable resource for multiparty quantum information tasks.
The Einstein-Podolsky-Rosen (EPR) paradox plays a fundamental role in our understanding of quantum mechanics, and is associated with the possibility of predicting the results of non-commuting measurements with a precision that seems to violate the un certainty principle. This apparent contradiction to complementarity is made possible by nonclassical correlations stronger than entanglement, called steering. Quantum information recognises steering as an essential resource for a number of tasks but, contrary to entanglement, its role for metrology has so far remained unclear. Here, we formulate the EPR paradox in the framework of quantum metrology, showing that it enables the precise estimation of a local phase shift and of its generating observable. Employing a stricter formulation of quantum complementarity, we derive a criterion based on the quantum Fisher information that detects steering in a larger class of states than well-known uncertainty-based criteria. Our result identifies useful steering for quantum-enhanced precision measurements and allows one to uncover steering of non-Gaussian states in state-of-the-art experiments.
We identify the families of states that maximise some recently proposed quantifiers of Einstein-Podolsky-Rosen (EPR) steering and the volume of the Quantum Steering Ellipsoid (QSE). The optimal measurements which maximise genuine EPR steering measure s are discussed and we develop a novel way to find them using the QSE. We thus explore the links between genuine EPR steering and the QSE and introduce states that can be the most useful for one-sided device-independent quantum cryptography for a given amount of noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا