ﻻ يوجد ملخص باللغة العربية
Following the idea of nucleon clustering and light-nuclei production in relativistic heavy-ion collisions close to the QCD critical-end point, we address the quantum effects affecting the interaction of several nucleons at finite temperature. For this aim we use the $K$-harmonics method to four-nucleon states ($alpha$ particle), and also develop a novel semiclassical flucton method at finite temperature, based on certain classical paths in Euclidean time, and apply it to two- and four-particle configurations. To study possible effects on the light-nuclei production close to the QCD critical point, we also made such calculations with modified internuclear potentials. For heavy-ion experiments, we propose new measurements of light-nuclei multiplicity ratios which may show enhancements due to baryon preclustering. We point out the special role of the $mathcal{O}(50)$ four-nucleon excitations of $alpha$-particle, feeding into the final multiplicities of $d,t$, $^3$He and $^4$He, and propose to directly look for their two-body decays.
Based on transport equations we argue that the chiral dynamics in heavy-ion collisions at high collision energies effectively decouples from the thermal physics of the fireball. With full decoupling at LHC energies the chiral condensate relaxes to it
The freeze-out conditions in the light (S+S) and heavy (Pb+Pb) colliding systems of heavy nuclei at 160 AGeV/$c$ are analyzed within the microscopic Quark Gluon String Model (QGSM). We found that even for the most heavy systems particle emission take
Relative hadron abundances from high-energy heavy-ion collisions reveal substantial inhomogeneities of temperature and baryon-chemical potential within the decoupling volume. The freeze-out volume is not perfectly stirred, i.e. the concentrations of
A QCD phase transition may reflect in a inhomogeneous decoupling surface of hadrons produced in relativistic heavy-ion collisions. We show that due to the non-linear dependence of the particle densities on the temperature and baryon-chemical potentia
Two-particle femtoscopy reveals the space-time substructure of the freeze-out configuration from heavy ion collisions. Detailed fingerprints of bulk collectivity are evident in space-momentum correlations, which have been systematically measured as a