ترغب بنشر مسار تعليمي؟ اضغط هنا

Baryon preclustering at the freeze-out of heavy-ion collisions and light-nuclei production

77   0   0.0 ( 0 )
 نشر من قبل Juan M. Torres-Rincon
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Following the idea of nucleon clustering and light-nuclei production in relativistic heavy-ion collisions close to the QCD critical-end point, we address the quantum effects affecting the interaction of several nucleons at finite temperature. For this aim we use the $K$-harmonics method to four-nucleon states ($alpha$ particle), and also develop a novel semiclassical flucton method at finite temperature, based on certain classical paths in Euclidean time, and apply it to two- and four-particle configurations. To study possible effects on the light-nuclei production close to the QCD critical point, we also made such calculations with modified internuclear potentials. For heavy-ion experiments, we propose new measurements of light-nuclei multiplicity ratios which may show enhancements due to baryon preclustering. We point out the special role of the $mathcal{O}(50)$ four-nucleon excitations of $alpha$-particle, feeding into the final multiplicities of $d,t$, $^3$He and $^4$He, and propose to directly look for their two-body decays.

قيم البحث

اقرأ أيضاً

Based on transport equations we argue that the chiral dynamics in heavy-ion collisions at high collision energies effectively decouples from the thermal physics of the fireball. With full decoupling at LHC energies the chiral condensate relaxes to it s vacuum expectation value on a much shorter time scale than the typical evolution time of the fluid dynamical fields and their fluctuations. In particular, the net-baryon density remains coupled to the bulk evolution at all collision energies. As the mass scales of the hadrons are controlled by the chiral condensate, it is reasonable to employ vacuum masses in the statistical description of the hadron production at the chemical freeze-out for high collision energies. We predict that at lower collision energies the coupling of the chiral condensate to the thermal medium gradually increases with consequences for the related hadronic masses. A new estimate for the location of the freeze-out curve takes these effects into account.
The freeze-out conditions in the light (S+S) and heavy (Pb+Pb) colliding systems of heavy nuclei at 160 AGeV/$c$ are analyzed within the microscopic Quark Gluon String Model (QGSM). We found that even for the most heavy systems particle emission take s place from the whole space-time domain available for the system evolution, but not from the thin freeze-out hypersurface, adopted in fluid dynamical models. Pions are continuously emitted from the whole volume of the reaction and reflect the main trends of the system evolution. Nucleons in Pb+Pb collisions initially come from the surface region. For both systems there is a separation of the elastic and inelastic freeze-out. The mesons with large transverse momenta, $p_t$, are predominantly produced at the early stages of the reaction. The low $p_t$-component is populated by mesons coming mainly from the decay of resonances. This explains naturally the decreasing source sizes with increasing $p_t$, observed in HBT interferometry. Comparison with S+S and Au+Au systems at 11.6 AGeV/$c$ is also presented.
Relative hadron abundances from high-energy heavy-ion collisions reveal substantial inhomogeneities of temperature and baryon-chemical potential within the decoupling volume. The freeze-out volume is not perfectly stirred, i.e. the concentrations of pions, kaons, (anti-) nucleons etc are inhomogeneous. Such inhomogeneities in the late stages of the hydrodynamic expansion might be traces of a first-order phase transition.
A QCD phase transition may reflect in a inhomogeneous decoupling surface of hadrons produced in relativistic heavy-ion collisions. We show that due to the non-linear dependence of the particle densities on the temperature and baryon-chemical potentia l such inhomogeneities should be visible even in the integrated, inclusive abundances. We analyze experimental data from Pb+Pb collisions at CERN-SPS and Au+Au collisions at BNL-RHIC to determine the amplitude of inhomogeneities.
Two-particle femtoscopy reveals the space-time substructure of the freeze-out configuration from heavy ion collisions. Detailed fingerprints of bulk collectivity are evident in space-momentum correlations, which have been systematically measured as a function of particle type, three-momentum, and collision conditions. A clear scenario, dominated by hydrodynamic-type flow emerges. Reproducing the strength and features of the femtoscopic signals in models involves important physical quantities like the Equation of State, as well as less fundamental technical details. An interesting approximate factorization in the measured systematics suggests that the overall physical freeze-out scale is set by final state chemistry, but the kinematic substructure is largely universal. Referring to previous results from hadron and lepton collisions, we point to the importance of determining whether these universal trends persist from the largest to the smallest systems. We review theoretical expectations for heavy ion femtoscopy at the LHC, and point to directions needing further theory and experimental work at RHIC and the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا