ﻻ يوجد ملخص باللغة العربية
We report $^{125}$Te NMR measurements of the topological quantum material ZrTe$_5$. Spin-lattice relaxation results, well-explained by a theoretical model of Dirac electron systems, reveal that the topological characteristic of ZrTe$_5$ is $T$-dependent, changing from weak topological insulator to strong topological insulator as temperature increases. Electronic structure calculations confirm this ordering, the reverse of what has been proposed. NMR results demonstrate a gapless Dirac semimetal state occurring at a Lifshitz transition temperature, $T_c=85$ K in our crystals. We demonstrate that the changes in NMR shift at $T_c$ also provide direct evidence of band inversion when the topological phase transition occurs.
The topological materials have attracted much attention recently. While three-dimensional topological insulators are becoming abundant, two-dimensional topological insulators remain rare, particularly in natural materials. ZrTe5 has host a long-stand
Much effort has been devoted to the electronic properties of relatively thick ZrTe5 crystals, focusing on their three-dimensional topological effects. Thin ZrTe5 crystals, on the other hand, were much less explored experimentally. Here we present det
Two-dimensional (2D) topological insulators (TIs) with a large bulk band-gap are promising for experimental studies of the quantum spin Hall effect and for spintronic device applications. Despite considerable theoretical efforts in predicting large-g
Topologically nontrivial materials host protected edge states associated with the bulk band inversion through the bulk-edge correspondence. Manipulating such edge states is highly desired for developing new functions and devices practically using the
We use first-principles simulation and virtual crystal approximation to reveal the unique double band inversion and topological phase transition in Ge1-xSnx alloys. Wavefunction parity, spatial charge distribution and surface state spectrum analyses