ﻻ يوجد ملخص باللغة العربية
Anisotropic superexchange interaction is one of the most important interactions in realizing exotic quantum magnetism, which is traditionally regarded to originate from magnetic ions and has no relation with the nonmagnetic ions. In our work, by studying a multi-orbital Hubbard model with spin-orbit coupling on both magnetic cations and nonmagnetic anions, we analytically demonstrate that the spin-orbit coupling on nonmagnetic anions alone can induce antisymmetric Dzyaloshinskii-Moriya interaction, symmetric anisotropic exchange and single ion anisotropy on the magnetic ions and thus it actually contributes to anisotropic superexchange on an equal footing as that of magnetic ions. Our results promise one more route to realize versatile exotic phases in condensed matter systems, long-range orders in low dimensional materials and switchable single molecule magnetic devices for recording and manipulating quantum information through nonmagnetic anions.
We chart out the phase diagram of ultracold `spin-half bosons in a one-dimensional optical lattice in the presence of Aubry-Andre (AA) potential and with spin-orbit (SO) and Raman couplings investigating the transition from superfluid (SF) to localiz
A hole injected into a Mott insulator will gain an internal structure as recently identified by exact numerics, which is characterized by a nontrivial quantum number whose nature is of central importance in understanding the Mott physics. In this wor
A systematic inelastic neutron scattering study of the superexchange interaction in three different undoped monolayer cuprates (La_2CuO_4, Nd_2CuO_4 and Pr_2CuO_4) has been performed using conventional triple axis technique. We deduce the in-plane an
The Dzyaloshinskii-Moriya (DM) interaction, as well as symmetric anisotropic exchange, are important ingredients for stabilizing topologically non-trivial magnetic textures, such as, e.g., skyrmions, merons and hopfions. These types of textures are c
Several realistic spin-orbital models for transition metal oxides go beyond the classical expectations and could be understood only by employing the quantum entanglement. Experiments on these materials confirm that spin-orbital entanglement has measu