ﻻ يوجد ملخص باللغة العربية
We define Poincar{e} profiles of Dirichlet type for graphs of bounded degree, in analogy with the Poincar{e} profiles (of Neumann type) defined in [HMT19]. The obvious first definition yields nothing of interest, but an alternative definition yields a spectrum of profiles which are quasi-isometry invariants and monotone with respect to subgroup inclusion. Moreover, in the extremal cases $p=1$ and $p=infty$, they detect the Fo lner function and the growth function respectively.
We introduce a spectrum of monotone coarse invariants for metric measure spaces called Poincar{e} profiles. The two extremes of this spectrum determine the growth of the space, and the separation profile as defined by Benjamini--Schramm--Tim{a}r. In
Divergence functions of a metric space estimate the length of a path connecting two points $A$, $B$ at distance $le n$ avoiding a large enough ball around a third point $C$. We characterize groups with non-linear divergence functions as groups having
Poincare profiles are a family of analytically defined coarse invariants, which can be used as obstructions to the existence of coarse embeddings between metric spaces. In this paper we calculate the Poincare profiles of all connected unimodular Lie
We prove that a group is presented by finite convergent length-reducing rewriting systems where each rule has left-hand side of length 3 if and only if the group is plain. Our proof goes via a new result concerning properties of embedded circuits in
We prove that a random group in the triangular density model has, for density larger than 1/3, fixed point properties for actions on $L^p$-spaces (affine isometric, and more generally $(2-2epsilon)^{1/2p}$-uniformly Lipschitz) with $p$ varying in an