ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal stopping contract for Public Private Partnerships under moral hazard

59   0   0.0 ( 0 )
 نشر من قبل Ishak Hajjej
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper studies optimal Public Private Partnerships contract between a public entity and a consortium, in continuous-time and with a continuous payment, with the possibility for the public to stop the contract. The public (she) pays a continuous rent to the consortium (he), while the latter gives a best response characterized by his effort. This effect impacts the drift of the social welfare, until a terminal date decided by the public when she stops the contract and gives compensation to the consortium. Usually, the public can not observe the effort done by the consortium, leading to a principal agents problem with moral hazard. We solve this optimal stochastic control with optimal stopping problem in this context of moral hazard. The public value function is characterized by the solution of an associated Hamilton Jacobi Bellman Variational Inequality. The public value function and the optimal effort and rent processes are computed numerically by using the Howard algorithm. In particular, the impact of the social welfares volatility on the optimal contract is studied.



قيم البحث

اقرأ أيضاً

Public-Private Partnership (PPP) is a contract between a public entity and a consortium, in which the public outsources the construction and the maintenance of an equipment (hospital, university, prison...). One drawback of this contract is that the public may not be able to observe the effort of the consortium but only its impact on the social welfare of the project. We aim to characterize the optimal contract for a PPP in this setting of asymmetric information between the two parties. This leads to a stochastic control under partial information and it is also related to principal-agent problems with moral hazard. Considering a wider set of information for the public and using martingale arguments in the spirit of Sannikov, the optimization problem can be reduced to a standard stochastic control problem, that is solved numerically. We then prove that for the optimal contract, the effort of the consortium is explicitly characterized. In particular, it is shown that the optimal rent is not a linear function of the effort, contrary to some models of the economic literature on PPP contracts.
64 - Hanwu Li 2018
We develop a theory of optimal stopping problems under G-expectation framework. We first define a new kind of random times, called G-stopping times, which is suitable for this problem. For the discrete time case with finite horizon, the value functio n is defined backwardly and we show that it is the smallest G-supermartingale dominating the payoff process and the optimal stopping time exists. Then we extend this result both to the infinite horizon and to the continuous time case. We also establish the relation between the value function and solution of reflected BSDE driven by G-Brownian motion.
68 - Hanwu Li 2019
In this paper, we study the optimal multiple stopping problem under the filtration consistent nonlinear expectations. The reward is given by a set of random variables satisfying some appropriate assumptions rather than an RCLL process. We first const ruct the optimal stopping time for the single stopping problem, which is no longer given by the first hitting time of processes. We then prove by induction that the value function of the multiple stopping problem can be interpreted as the one for the single stopping problem associated with a new reward family, which allows us to construct the optimal multiple stopping times. If the reward family satisfies some strong regularity conditions, we show that the reward family and the value functions can be aggregated by some progressive processes. Hence, the optimal stopping times can be represented as hitting times.
66 - Zuo Quan Xu 2018
This paper investigates Pareto optimal (PO, for short) insurance contracts in a behavioral finance framework, in which the insured evaluates contracts by the rank-dependent utility (RDU) theory and the insurer by the expected value premium principle. The incentive compatibility constraint is taken into account, so the contracts are free of moral hazard. The problem is initially formulated as a non-concave maximization problem involving Choquet expectation, then turned into a quantile optimization problem and tackled by calculus of variations method. The optimal contracts are expressed by a double-obstacle ordinary differential equation for a semi-linear second-order elliptic operator with nonlocal boundary conditions. We provide a simple numerical scheme as well as a numerical example to calculate the optimal contracts. Let $theta$ and $m_0$ denote the relative safety loading and the mass of the potential loss at 0. We find that every moral-hazard-free contract is optimal for infinitely many RDU insureds if $0<theta<frac{m_0}{1-m_0}$; by contrast, some contracts such as the full coverage contract are never optimal for any RDU insured if $theta>frac{m_0}{1-m_0}$. We also derive all the PO contracts when either the compensations or the retentions loss monotonicity.
In this article we study and classify optimal martingales in the dual formulation of optimal stopping problems. In this respect we distinguish between weakly optimal and surely optimal martingales. It is shown that the family of weakly optimal and su rely optimal martingales may be quite large. On the other hand it is shown that the Doob-martingale, that is, the martingale part of the Snell envelope, is in a certain sense the most robust surely optimal martingale under random perturbations. This new insight leads to a novel randomized dual martingale minimization algorithm that doesnt require nested simulation. As a main feature, in a possibly large family of optimal martingales the algorithm efficiently selects a martingale that is as close as possible to the Doob martingale. As a result, one obtains the dual upper bound for the optimal stopping problem with low variance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا