ﻻ يوجد ملخص باللغة العربية
We study the convergence of gradient flows related to learning deep linear neural networks (where the activation function is the identity map) from data. In this case, the composition of the network layers amounts to simply multiplying the weight matrices of all layers together, resulting in an overparameterized problem. The gradient flow with respect to these factors can be re-interpreted as a Riemannian gradient flow on the manifold of rank-$r$ matrices endowed with a suitable Riemannian metric. We show that the flow always converges to a critical point of the underlying functional. Moreover, we establish that, for almost all initializations, the flow converges to a global minimum on the manifold of rank $k$ matrices for some $kleq r$.
We study the convergence issue for the gradient algorithm (employing general step sizes) for optimization problems on general Riemannian manifolds (without curvature constraints). Under the assumption of the local convexity/quasi-convexity (resp. wea
In non-convex settings, it is established that the behavior of gradient-based algorithms is different in the vicinity of local structures of the objective function such as strict and non-strict saddle points, local and global minima and maxima. It is
We study the asymmetric low-rank factorization problem: [min_{mathbf{U} in mathbb{R}^{m times d}, mathbf{V} in mathbb{R}^{n times d}} frac{1}{2}|mathbf{U}mathbf{V}^top -mathbf{Sigma}|_F^2] where $mathbf{Sigma}$ is a given matrix of size $m times n$ a
Communication efficiency is a major bottleneck in the applications of distributed networks. To address the problem, the problem of quantized distributed optimization has attracted a lot of attention. However, most of the existing quantized distribute
The popular BFGS quasi-Newton minimization algorithm under reasonable conditions converges globally on smooth convex functions. This result was proved by Powell in 1976: we consider its implications for functions that are not smooth. In particular, a