ترغب بنشر مسار تعليمي؟ اضغط هنا

The HH 212 interstellar laboratory: astrochemistry as a tool to reveal protostellar disks on Solar System scales around a rising Sun

401   0   0.0 ( 0 )
 نشر من قبل Claudio Codella
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The investigation of star forming regions have enormously benefited from the recent advent of the ALMA interferometer. More specifically, the unprecedented combination of high-sensitivity and high-angular resolution provided by ALMA allows one to shed light on the jet/disk systems associated with a Sun-like mass protostar. Also astrochemistry enjoyed the possibility to analyze complex spectra obtained using large bandwidths: several interstellar Complex Organic Molecules (iCOMs; C-bearing species with at least 6 atoms) have been imaged around protostars. This in turn boosted the study of the astrochemistry at work during the earliest phases of star formation paving the way to the chemical complexity in planetary systems where Life could emerge. There is mounting evidence that the observations of iCOMs can be used as unique tool to shed light, on Solar System scales (< 50 au), on the molecular content of protostellar disk. The increase of iCOMs abundances occur only under very selective physical conditions, such as those associated low-velocity shocks found where the infalling envelope is impacting the rotating accretion disk. The imaging of these regions with simpler molecules such as CO or CS is indeed paradoxically hampered by their high abundances and consequently high line opacities which do not allow the observers to disentangle all the emitting components at these small scales. In this respect, we review the state-of-the art of the ALMA analysis about the standard Sun-like star forming region in Orion named HH 212. We show (i) how all the physical components involved in the formation of a Sun-like star can be revealed only by observing different molecular tracers, and (ii) how the observation of iCOMs emission, observed to infer the chemical composition of star forming regions, can be used also as unique tracer to image protostellar disks on Solar System scales.

قيم البحث

اقرأ أيضاً

The latest developments in astrochemistry have shown how some molecular species can be used as a tool to study the early stages of the solar-type star formation process. Among them, the more relevant species are the interstellar complex organic molec ules (iCOMs) and the deuterated molecules. Their analysis give us information on the present and past history of protostellar objects. Among the protostellar evolutionary stages, Class I protostars represent a perfect laboratory in which to study the initial conditions for the planet formation process. Indeed, from a physical point of view, the Class I stage is the bridge between the Class 0 phase, dominated by the accretion process, and the protoplanetary disk phase, when planets form. Despite their importance, few observations of Class I protostars exist and very little is known about their chemical content. In this paper we review the (few) existing observations of iCOMs and deuterated species in Class I protostars. In addition, we present new observations of deuterated cyanoacetylene and thioformaldehyde towards the Class I protostar SVS13-A. These new observations allow us to better understand the physical and chemical structure of SVS13-A and compare the cyanoacetylene and thioformaldehyde deuteration with other sources in different evolutionary phases.
Solar analogs, broadly defined as stars similar to the Sun in mass or spectral type, provide a useful laboratory for exploring the range of Sun-like behaviors and exploring the physical mechanisms underlying some of the Suns most elusive processes li ke coronal heating and the dynamo. We describe a series of heliophysics-motivated, but astrophysics-like studies of solar analogs. We argue for a range of stellar observations, including (a) the identification and fundamental parameter determination of new solar analogs, and (b) characterizing emergent properties like activity, magnetism, and granulation. These parameters should be considered in the framework of statistical studies of the dependences of these observables on fundamental stellar parameters like mass, metallicity, and rotation.
We used ALMA to observe the star-forming region GGD27 at 1.14 mm with an unprecedented angular resolution, 40 mas (56 au) and sensitivity (0.002 Msun). We detected a cluster of 25 continuum sources, most of which are likely tracing disks around Class 0/I protostars. Excluding the two most massive objects, disks masses are in the range 0.003-0.05 Msun. The analysis of the cluster properties indicates that GGD27 displays moderate subclustering. This result combined with the dynamical timescale of the radio jet (10000 years) suggests the youthfulness of the cluster. The lack of disk mass segregation signatures may support this too. We found a clear paucity of disks with Rdisk >100 au. The median value of the radius is 34 au, smaller than the median of 92 au for Taurus but comparable to the value found in Ophiuchus and in the Orion Nebula Cluster. In GGD27 there is no evidence of a distance-dependent disk mass distribution (i. e., disk mass depletion due to external photoevaporation), most likely due to the cluster youth. There is a clear deficit of disks for distances <0.02 pc. Only for distances >0.04 pc stars can form larger and more massive disks, suggesting that dynamical interactions far from the cluster center are weaker, although the small disks found could be the result of disk truncation. This work demonstrates the potential to characterize disks from low-mass YSOs in distant and massive (still deeply embedded) clustered environments.
The central problem in forming a star is the angular momentum in the circumstellar disk which prevents material from falling into the central stellar core. An attractive solution to the angular momentum problem appears to be the ubiquitous (low-veloc ity and poorly-collimated) molecular outflows and (high-velocity and highly-collimated) protostellar jets accompanying the earliest phase of star formation that remove angular momentum at a range of disk radii. Previous observations suggested that outflowing material carries away the excess angular momentum via magneto-centrifugally driven winds from the surfaces of circumstellar disks down to ~ 10 AU scales, allowing the material in the outer disk to transport to the inner disk. Here we show that highly collimated protostellar jets remove the residual angular momenta at the ~ 0.05 AU scale, enabling the material in the innermost region of the disk to accrete toward the central protostar. This is supported by the rotation of the jet measured down to ~ 10 AU from the protostar in the HH 212 protostellar system. The measurement implies a jet launching radius of ~ 0.05_{-0.02}^{+0.05} AU on the disk, based on the magneto-centrifugal theory of jet production, which connects the properties of the jet measured at large distances to those at its base through energy and angular momentum conservation.
(Sub)millimeter dust opacities are required for converting the observable dust continuum emission to the mass, but their values have long been uncertain, especially in disks around young stellar objects. We propose a method to constrain the opacity $ kappa_ u$ in edge-on disks from a characteristic optical depth $tau_{0, u}$, the density $rho_0$ and radius $R_0$ at the disk outer edge through $kappa_ u=tau_{0, u}/(rho_0 R_0)$ where $tau_{0, u}$ is inferred from the shape of the observed flux along the major axis, $rho_0$ from gravitational stability considerations, and $R_0$ from direct imaging. We applied the 1D semi-analytical model to the embedded, Class 0, HH 212 disk, which has high-resolution data in ALMA Band 9, 7, 6, and 3 and VLA Ka band ($lambda$=0.43, 0.85, 1.3, 2.9, and 9.1 mm). The modeling of the HH 212 disk is extended to 2D through RADMC-3D radiative transfer calculations. We find a dust opacity of $kappa_ u approx $ $1.9times 10^{-2}$, $1.3times 10^{-2}$, and $4.9times 10^{-3}$ cm$^2$ per gram of gas and dust for ALMA Bands 7, 6, and 3, respectively with uncertainties dependent on the adopted stellar mass. The inferred opacities lend support to the widely used prescription $kappa_lambda=2.3times 10^{-2} (1.3 {rm mm}/lambda)$ cm$^2$ g$^{-1}$ advocated by Beckwith et al. (1990). We inferred a temperature of ~45K at the disk outer edge which increases radially inward. It is well above the sublimation temperatures of ices such as CO and N$_2$, which supports the notion that the disk chemistry cannot be completely inherited from the protostellar envelope.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا