ﻻ يوجد ملخص باللغة العربية
We use moment method to understand the cycle structure of the composition of independent invariant permutations. We prove that under a good control on fixed points and cycles of length 2, the limiting joint distribution of the number of small cycles is the same as in the uniform case i.e. for any positive integer k, the number of cycles of length k converges to the Poisson distribution with parameter 1/k and is asymptotically independent of the number of cycles of length k different from k.
In this article we consider the cycle structure of compositions of pairs of involutions in the symmetric group S_n chosen uniformly at random. These can be modeled as modified 2-regular graphs, giving rise to exponential generating functions. A compo
This paper develops an analogy between the cycle structure of, on the one hand, random permutations with cycle lengths restricted to lie in an infinite set $S$ with asymptotic density $sigma$ and, on the other hand, permutations selected according to
We consider a generalised model of a random simplicial complex, which arises from a random hypergraph. Our model is generated by taking the downward-closure of a non-uniform binomial random hypergraph, in which for each $k$, each set of $k+1$ vertice
In this note we investigate correlation inequalities for `up-sets of permutations, in the spirit of the Harris--Kleitman inequality. We focus on two well-studied partial orders on $S_n$, giving rise to differing notions of up-sets. Our first result s
We compute the limiting distribution, as n approaches infinity, of the number of cycles of length between gamma n and delta n in a permutation of [n] chosen uniformly at random, for constants gamma, delta such that 1/(k+1) <= gamma < delta <= 1/k for