ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase transition in cohomology groups of non-uniform random simplicial complexes

127   0   0.0 ( 0 )
 نشر من قبل Oliver Cooley
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a generalised model of a random simplicial complex, which arises from a random hypergraph. Our model is generated by taking the downward-closure of a non-uniform binomial random hypergraph, in which for each $k$, each set of $k+1$ vertices forms an edge with some probability $p_k$ independently. As a special case, this contains an extensively studied model of a (uniform) random simplicial complex, introduced by Meshulam and Wallach [Random Structures & Algorithms 34 (2009), no. 3, pp. 408-417]. We consider a higher-dimensional notion of connectedness on this new model according to the vanishing of cohomology groups over an arbitrary abelian group $R$. We prove that this notion of connectedness displays a phase transition and determine the threshold. We also prove a hitting time result for a natural process interpretation, in which simplices and their downward-closure are added one by one. In addition, we determine the asymptotic behaviour of cohomology groups inside the critical window around the time of the phase transition.



قيم البحث

اقرأ أيضاً

We provide a random simplicial complex by applying standard constructions to a Poisson point process in Euclidean space. It is gigantic in the sense that - up to homotopy equivalence - it almost surely contains infinitely many copies of every compact topological manifold, both in isolation and in percolation.
82 - Connor Sawaske 2019
Given an infinite field $mathbb{k}$ and a simplicial complex $Delta$, a common theme in studying the $f$- and $h$-vectors of $Delta$ has been the consideration of the Hilbert series of the Stanley--Reisner ring $mathbb{k}[Delta]$ modulo a generic lin ear system of parameters $Theta$. Historically, these computations have been restricted to special classes of complexes (most typically triangulations of spheres or manifolds). We provide a compact topological expression of $h_{d-1}^mathfrak{a}(Delta)$, the dimension over $mathbb{k}$ in degree $d-1$ of $mathbb{k}[Delta]/(Theta)$, for any complex $Delta$ of dimension $d-1$. In the process, we provide tools and techniques for the possible extension to other coefficients in the Hilbert series.
The cutoff phenomenon was recently confirmed for random walks on Ramanujan graphs by the first author and Peres. In this work, we obtain analogs in higher dimensions, for random walk operators on any Ramanujan complex associated with a simple group $ G$ over a local field $F$. We show that if $T$ is any $k$-regular $G$-equivariant operator on the Bruhat-Tits building with a simple combinatorial property (collision-free), the associated random walk on the $n$-vertex Ramanujan complex has cutoff at time $log_k n$. The high dimensional case, unlike that of graphs, requires tools from non-commutative harmonic analysis and the infinite-dimensional representation theory of $G$. Via these, we show that operators $T$ as above on Ramanujan complexes give rise to Ramanujan digraphs with a special property ($r$-normal), implying cutoff. Applications include geodesic flow operators, geometric implications, and a confirmation of the Riemann Hypothesis for the associated zeta functions over every group $G$, previously known for groups of type $widetilde A_n$ and $widetilde C_2$.
181 - Anais Vergne 2013
Random abstract simplicial complex representation provides a mathematical description of wireless networks and their topology. In order to reduce the energy consumption in this type of network, we intend to reduce the number of network nodes without modifying neither the connectivity nor the coverage of the network. In this paper, we present a reduction algorithm that lower the number of points of an abstract simplicial complex in an optimal order while maintaining its topology. Then, we study the complexity of such an algorithm for a network simulated by a binomial point process and represented by a Vietoris-Rips complex.
219 - A. Costa , M. Farber 2015
In this paper we develop further the multi-parameter model of random simplicial complexes. Firstly, we give an intrinsic characterisation of the multi-parameter probability measure. Secondly, we show that in multi-parameter random simplicial complexe s the links of simplexes and their intersections are also multi-parameter random simplicial complexes. Thirdly, we find conditions under which a multi-parameter random simplicial complex is connected and simply connected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا