ﻻ يوجد ملخص باللغة العربية
A new evolution algorithm for the characteristic initial value problem based upon an affine parameter rather than the areal radial coordinate used in the Bondi-Sachs formulation is applied in the spherically symmetric case to the gravitational collapse of a massless scalar field. The advantages over the Bondi-Sachs version are discussed, with particular emphasis on the application to critical collapse. Unexpected quadratures lead to a simple evolution algorithm based upon ordinary differential equations which can be integrated along the null rays. For collapse to a black hole in a Penrose compactified spacetime, these equations are regularized throughout the exterior and interior of the horizon up to the final singularity. They are implemented as a global numerical evolution code based upon the Galerkin method. New results regarding the global properties of critical collapse are presented.
We present a symmetric hyperbolic formulation of the Einstein equations in affine-null coordinates. Giannakopoulos et. al. (arXiv:2007.06419) recently showed that the most commonly numerically implemented formulations of the Einstein equations in aff
This work demonstrates that a complete description of the interaction of matter and all forces, gravitational and non-gravitational, can in fact be realized within a quantum affine algebraic framework. Using the affine group formalism, we construct e
We investigate the behavior of null geodesics near future null infinity in asymptotically flat spacetimes. In particular, we focus on the asymptotic behavior of null geodesics that correspond to worldlines of photons initially emitted in the directio
We present in this paper a 4-dimensional formulation of the Newton equations for gravitation on a Lorentzian manifold, inspired from the 1+3 and 3+1 formalisms of general relativity. We first show that the freedom on the coordinate velocity of a gene
We adopt a reference-metric approach to generalize a covariant and conformal version of the Z4 system of the Einstein equations. We refer to the resulting system as ``fully covariant and conformal, or fCCZ4 for short, since it is well suited for curv