ترغب بنشر مسار تعليمي؟ اضغط هنا

The affine-null formulation of the gravitational equations: spherical case

68   0   0.0 ( 0 )
 نشر من قبل Henrique de Oliveira
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new evolution algorithm for the characteristic initial value problem based upon an affine parameter rather than the areal radial coordinate used in the Bondi-Sachs formulation is applied in the spherically symmetric case to the gravitational collapse of a massless scalar field. The advantages over the Bondi-Sachs version are discussed, with particular emphasis on the application to critical collapse. Unexpected quadratures lead to a simple evolution algorithm based upon ordinary differential equations which can be integrated along the null rays. For collapse to a black hole in a Penrose compactified spacetime, these equations are regularized throughout the exterior and interior of the horizon up to the final singularity. They are implemented as a global numerical evolution code based upon the Galerkin method. New results regarding the global properties of critical collapse are presented.

قيم البحث

اقرأ أيضاً

236 - Justin L. Ripley 2021
We present a symmetric hyperbolic formulation of the Einstein equations in affine-null coordinates. Giannakopoulos et. al. (arXiv:2007.06419) recently showed that the most commonly numerically implemented formulations of the Einstein equations in aff ine-null coordinates (and other single-null coordinate systems) are only weakly-but not strongly-hyperbolic. By making use of the tetrad-based Newman-Penrose formalism, our formulation avoids the hyperbolicity problems of the formulations investigated by Giannakopoulos et. al. We discuss a potential application of our formulation for studying gravitational wave scattering.
This work demonstrates that a complete description of the interaction of matter and all forces, gravitational and non-gravitational, can in fact be realized within a quantum affine algebraic framework. Using the affine group formalism, we construct e lements of a physical Hilbert space for full, Lorentzian quantum gravity coupled to the Standard Model in four spacetime dimensions. Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant.
We investigate the behavior of null geodesics near future null infinity in asymptotically flat spacetimes. In particular, we focus on the asymptotic behavior of null geodesics that correspond to worldlines of photons initially emitted in the directio ns tangential to the constant radial surfaces in the Bondi coordinates. The analysis is performed for general dimensions, and the difference between the four-dimensional cases and the higher-dimensional cases is stressed. In four dimensions, some assumptions are required to guarantee the null geodesics to reach future null infinity, in addition to the conditions of asymptotic flatness. Without these assumptions, gravitational waves may prevent photons from reaching null infinity. In higher dimensions, by contrast, such assumptions are not necessary, and gravitational waves do not affect the asymptotic behavior of null geodesics.
95 - Quentin Vigneron 2020
We present in this paper a 4-dimensional formulation of the Newton equations for gravitation on a Lorentzian manifold, inspired from the 1+3 and 3+1 formalisms of general relativity. We first show that the freedom on the coordinate velocity of a gene ral time-parametrised coordinate system with respect to a Galilean reference system is similar to the shift freedom in the 3+1-formalism of general relativity. This allows us to write Newtons theory as living in a 4-dimensional Lorentzian manifold $M^N$. This manifold can be chosen to be curved depending on the dynamics of the Newtonian fluid. In this paper, we focus on a specific choice for $M^N$ leading to what we call the textit{1+3-Newton equations}. We show that these equations can be recovered from general relativity with a Newtonian limit performed in the rest frames of the relativistic fluid. The 1+3 formulation of the Newton equations along with the Newtonian limit we introduce also allow us to define a dictionary between Newtons theory and general relativity. This dictionary is defined in the rest frames of the dust fluid, i.e. a non-accelerating observer. A consequence of this is that it is only defined for irrotational fluids. As an example supporting the 1+3-Newton equations and our dictionary, we show that the parabolic free-fall solution in 1+3-Newton exactly translates into the Schwarzschild spacetime, and this without any approximations. The dictionary might then be an additional tool to test the validity of Newtonian solutions with respect to general relativity. It however needs to be further tested for non-vacuum, non-stationary and non-isolated Newtonian solutions, as well as to be adapted for rotational fluids. One of the main applications we consider for the 1+3 formulation of Newtons equations is to define new models suited for the study of backreaction and global topology in cosmology.
We adopt a reference-metric approach to generalize a covariant and conformal version of the Z4 system of the Einstein equations. We refer to the resulting system as ``fully covariant and conformal, or fCCZ4 for short, since it is well suited for curv ilinear as well as Cartesian coordinates. We implement this fCCZ4 formalism in spherical polar coordinates under the assumption of spherical symmetry using a partially-implicit Runge-Kutta (PIRK) method and show that our code can evolve both vacuum and non-vacuum spacetimes without encountering instabilities. Our method does not require regularization of the equations to handle coordinate singularities, nor does it depend on constraint-preserving outer boundary conditions, nor does it need any modifications of the equations for evolutions of black holes. We perform several tests and compare the performance of the fCCZ4 system, for different choices of certain free parameters, with that of BSSN. Confirming earlier results we find that, for an optimal choice of these parameters, and for neutron-star spacetimes, the violations of the Hamiltonian constraint can be between 1 and 3 orders of magnitude smaller in the fCCZ4 system than in the BSSN formulation. For black-hole spacetimes, on the other hand, any advantages of fCCZ4 over BSSN are less evident.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا