ﻻ يوجد ملخص باللغة العربية
We present in this paper a 4-dimensional formulation of the Newton equations for gravitation on a Lorentzian manifold, inspired from the 1+3 and 3+1 formalisms of general relativity. We first show that the freedom on the coordinate velocity of a general time-parametrised coordinate system with respect to a Galilean reference system is similar to the shift freedom in the 3+1-formalism of general relativity. This allows us to write Newtons theory as living in a 4-dimensional Lorentzian manifold $M^N$. This manifold can be chosen to be curved depending on the dynamics of the Newtonian fluid. In this paper, we focus on a specific choice for $M^N$ leading to what we call the textit{1+3-Newton equations}. We show that these equations can be recovered from general relativity with a Newtonian limit performed in the rest frames of the relativistic fluid. The 1+3 formulation of the Newton equations along with the Newtonian limit we introduce also allow us to define a dictionary between Newtons theory and general relativity. This dictionary is defined in the rest frames of the dust fluid, i.e. a non-accelerating observer. A consequence of this is that it is only defined for irrotational fluids. As an example supporting the 1+3-Newton equations and our dictionary, we show that the parabolic free-fall solution in 1+3-Newton exactly translates into the Schwarzschild spacetime, and this without any approximations. The dictionary might then be an additional tool to test the validity of Newtonian solutions with respect to general relativity. It however needs to be further tested for non-vacuum, non-stationary and non-isolated Newtonian solutions, as well as to be adapted for rotational fluids. One of the main applications we consider for the 1+3 formulation of Newtons equations is to define new models suited for the study of backreaction and global topology in cosmology.
Theories of gravity other than general relativity (GR) can explain the observed cosmic acceleration without a cosmological constant. One such class of theories of gravity is f(R). Metric f(R) theories have been proven to be equivalent to Brans-Dicke
A C-metric type solution for general relativity with cosmological constant is presented in 2+1 dimensions. It is interpreted as a three-dimensional black hole accelerated by a strut. Positive values of the cosmological constant are admissible too. So
We analyze the IGETS based gravitational acceleration measurements to search for a variability in Newtons constant $G$, as a complement to the analysis carried out in arXiv:2103.11157. To understand the variation in gravitational acceleration, we fit
We perform a covariant 1+3 split of the Newton-Cartan equations. The resulting 3-dimensional system of equations, called textit{the 1+3-Newton-Cartan equations}, is structurally equivalent to the 1+3-Einstein equations. In particular it features the
Bonazzola, Gourgoulhon, Grandclement, and Novak [Phys. Rev. D {bf 70}, 104007 (2004)] proposed a new formulation for 3+1 numerical relativity. Einstein equations result, according to that formalism, in a coupled elliptic-hyperbolic system. We have ca