ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital scattering by random interactions with extended substructures

40   0   0.0 ( 0 )
 نشر من قبل Jorge Penarrubia
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jorge Pe~narrubia




اسأل ChatGPT حول البحث

This paper presents $N$-body and stochastic models that describe the motion of tracer particles in a potential that contains a large population of extended substructures. Fluctuations of the gravitational field induce a random walk of orbital velocities that is fully specified by drift and diffusion coefficients. In the impulse and local approximations the coefficients are computed analytically from the number density, mass, size and relative velocity of substructures without arbitrary cuts in forces or impact parameters. The resulting Coulomb logarithm attains a well-defined geometrical meaning, $ln(Lambda)=ln (D/c)$, where $D/c$ is the ratio between the average separation and the individual size of substructures. Direct-force and Monte-Carlo $N$-body experiments show excellent agreement with the theory if substructures are sufficiently extended ($c/Dgtrsim 10^{-3}$) and not spatially overlapping ($c/Dlesssim 10^{-1}$). However, close encounters with point-like objects ($c/Dll 10^{-3}$) induce a heavy-tailed, non-Gaussian distribution of high-energy impulses that cannot be described with Brownian statistics. In the point-mass limit ($c/Dapprox 0$) the median Coulomb logarithm measured from $N$-body models deviates from the theoretical relation, converging towards a maximum value $langle ln(Lambda)rangle approx 8.2$ independently of the mass and relative velocity of nearby substructures.



قيم البحث

اقرأ أيضاً

45 - Jorge Pe~narrubia 2019
Gravitating systems surrounded by a dynamic sea of substructures experience fluctuations of the local tidal field which inject kinetic energy into the internal motions. This paper uses stochastic calculus techniques to describe `tidal heating as a ra ndom walk of orbital velocities that leads to diffusion in a 4-dimensional energy--angular momentum space. In spherical, static potentials we derive analytical solutions for the Greens propagators directly from the number density and velocity distribution of substructures with known mass & size functions without arbitrary cuts in forces or impact parameters. Furthermore, a Monte-Carlo method is presented, which samples velocity kicks from a probability function and can be used to model orbital scattering in fully generic potentials. For illustration, we follow the evolution of planetary orbits in a clumpy environment. We show that stochastic heating of (mass-less) discs in a Keplerian potential leads to the formation, and subsequent `evaporation of Oort-like clouds, and derive analytical expressions for the escape rate and the fraction of comets on retrograde orbits as a function of time. Extrapolation of the subhalo mass function of Milky Way-like haloes down to the WIMP free-streaming length suggests that objects in the outer Solar system experience repeated interactions with dark microhaloes on dynamical time-scales.
48 - Jorge Pe~narrubia 2017
A large population of extended substructures generates a stochastic gravitational field that is fully specified by the function $p({bf F})$, which defines the probability that a tracer particle experiences a force $bf F$ within the interval ${bf F},{ bf F}+ dbf F$. This paper presents a statistical technique for deriving the spectrum of random fluctuations directly from the number density of substructures with known mass and size functions. Application to the subhalo population found in cold dark matter simulations of Milky Way-sized haloes shows that, while the combined force distribution is governed by the most massive satellites, the fluctuations of the {it tidal} field are completely dominated by the smallest and most abundant subhaloes. In light of this result we discuss observational experiments that may be sufficiently sensitive to Galactic tidal fluctuations to probe the dark low-end of the subhalo mass function and constrain the particle mass of warm and ultra-light axion dark matter models.
55 - D. Crnojevic 2015
We present the widest-field resolved stellar map to date of the closest ($Dsim3.8$ Mpc) massive elliptical galaxy NGC 5128 (Centaurus A; Cen A), extending out to a projected galactocentric radius of $sim150$ kpc. The dataset is part of our ongoing Pa noramic Imaging Survey of Centaurus and Sculptor (PISCeS) utilizing the Magellan/Megacam imager. We resolve a population of old red giant branch stars down to $sim1.5$ mag below the tip of the red giant branch, reaching surface brightness limits as low as $mu_{V,0}sim32$ mag arcsec$^{-2}$. The resulting spatial stellar density map highlights a plethora of previously unknown streams, shells, and satellites, including the first tidally disrupting dwarf around Cen A (CenA-MM-Dw3), which underline its active accretion history. We report 13 previously unknown dwarf satellite candidates, of which 9 are confirmed to be at the distance of Cen A (the remaining 4 are not resolved into stars), with magnitudes in the range $M_V=-7.2$ to $-13.0$, central surface brightness values of $mu_{V,0}=25.4-26.9$ mag arcsec$^{-2}$, and half-light radii of $r_h=0.22-2.92$ kpc. These values are in line with Local Group dwarfs but also lie at the faint/diffuse end of their distribution; interestingly, CenA-MM-Dw3 has similar properties to the recently discovered ultra-diffuse galaxies in Virgo and Coma. Most of the new dwarfs are fainter than the previously known Cen A satellites. The newly discovered dwarfs and halo substructures are discussed in light of their stellar populations, and they are compared to those discovered by the PAndAS survey of M31.
Analysis of large-scale sequential data has been one of the most crucial tasks in areas such as bioinformatics, text, and audio mining. Existing string kernels, however, either (i) rely on local features of short substructures in the string, which ha rdly capture long discriminative patterns, (ii) sum over too many substructures, such as all possible subsequences, which leads to diagonal dominance of the kernel matrix, or (iii) rely on non-positive-definite similarity measures derived from the edit distance. Furthermore, while there have been works addressing the computational challenge with respect to the length of string, most of them still experience quadratic complexity in terms of the number of training samples when used in a kernel-based classifier. In this paper, we present a new class of global string kernels that aims to (i) discover global properties hidden in the strings through global alignments, (ii) maintain positive-definiteness of the kernel, without introducing a diagonal dominant kernel matrix, and (iii) have a training cost linear with respect to not only the length of the string but also the number of training string samples. To this end, the proposed kernels are explicitly defined through a series of different random feature maps, each corresponding to a distribution of random strings. We show that kernels defined this way are always positive-definite, and exhibit computational benefits as they always produce emph{Random String Embeddings (RSE)} that can be directly used in any linear classification models. Our extensive experiments on nine benchmark datasets corroborate that RSE achieves better or comparable accuracy in comparison to state-of-the-art baselines, especially with the strings of longer lengths. In addition, we empirically show that RSE scales linearly with the increase of the number and the length of string.
Cold Dark Matter (CDM) theory, a pillar of modern cosmology and astrophysics, predicts the existence of a large number of starless dark matter halos surrounding the Milky Way (MW). However, clear observational evidence of these dark substructures rem ains elusive. Here, we present a detection method based on the small, but detectable, velocity changes that an orbiting substructure imposes on the stars in the MW disk. Using high-resolution numerical simulations we estimate that the new space telescope Gaia should detect the kinematic signatures of a few starless substructures provided the CDM paradigm holds. Such a measurement will provide unprecedented constraints on the primordial matter power spectrum at low-mass scales and offer a new handle onto the particle physics properties of dark matter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا