ﻻ يوجد ملخص باللغة العربية
A large population of extended substructures generates a stochastic gravitational field that is fully specified by the function $p({bf F})$, which defines the probability that a tracer particle experiences a force $bf F$ within the interval ${bf F},{bf F}+ dbf F$. This paper presents a statistical technique for deriving the spectrum of random fluctuations directly from the number density of substructures with known mass and size functions. Application to the subhalo population found in cold dark matter simulations of Milky Way-sized haloes shows that, while the combined force distribution is governed by the most massive satellites, the fluctuations of the {it tidal} field are completely dominated by the smallest and most abundant subhaloes. In light of this result we discuss observational experiments that may be sufficiently sensitive to Galactic tidal fluctuations to probe the dark low-end of the subhalo mass function and constrain the particle mass of warm and ultra-light axion dark matter models.
This paper presents $N$-body and stochastic models that describe the motion of tracer particles in a potential that contains a large population of extended substructures. Fluctuations of the gravitational field induce a random walk of orbital velocit
Gravitating systems surrounded by a dynamic sea of substructures experience fluctuations of the local tidal field which inject kinetic energy into the internal motions. This paper uses stochastic calculus techniques to describe `tidal heating as a ra
We investigate the gravitational wave (GW) signal generated by a population of double neutron-star binaries (DNS) with eccentric orbits caused by kicks during supernova collapse and binary evolution. The DNS population of a standard Milky-Way type ga
We present the widest-field resolved stellar map to date of the closest ($Dsim3.8$ Mpc) massive elliptical galaxy NGC 5128 (Centaurus A; Cen A), extending out to a projected galactocentric radius of $sim150$ kpc. The dataset is part of our ongoing Pa
What gravitational field is generated by a massive quantum system in a spatial superposition? Despite decades of intensive theoretical and experimental research, we still do not know the answer. On the experimental side, the difficulty lies in the fa