ترغب بنشر مسار تعليمي؟ اضغط هنا

Qubit-photon corner states in all dimensions

366   0   0.0 ( 0 )
 نشر من قبل Juan Jose Garcia-Ripoll
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A single quantum emitter coupled to a one-dimensional photon field can perfectly trap a photon when placed close to a mirror. This occurs when the interference between the emitted and reflected light is completely destructive, leading to photon confinement between the emitter and the mirror. In higher dimensions, the spread of the light field in all directions hinders interference and, consequently, photon trapping by a single emitter is considered to be impossible. In this work, we show that is not the case by proving that a single emitter can indeed trap light in any dimension. We provide a constructive recipe based on judiciously coupling an emitter to a photonic crystal-like bath with properly designed open boundary conditions. The directional propagation of the photons in such baths enables perfect destructive interference, forming what we denote as emph{qubit-photon corner states}. We characterize these states in all dimensions, showing that they are robust under fluctuations of the emitters properties, and persist also in the ultrastrong coupling regime.



قيم البحث

اقرأ أيضاً

Qubits strongly coupled to a photonic crystal give rise to many exotic physical scenarios, beginning with single and multi-excitation qubit-photon dressed bound states comprising induced spatially localized photonic modes, centered around the qubits, and the qubits themselves. The localization of these states changes with qubit detuning from the band-edge, offering an avenue of in situ control of bound state interaction. Here, we present experimental results from a device with two qubits coupled to a superconducting microwave photonic crystal and realize tunable on-site and inter-bound state interactions. We observe a fourth-order two photon virtual process between bound states indicating strong coupling between the photonic crystal and qubits. Due to their localization-dependent interaction, these states offer the ability to create one-dimensional chains of bound states with tunable and potentially long-range interactions that preserve the qubits spatial organization, a key criterion for realization of certain quantum many-body models. The widely tunable, strong and robust interactions demonstrated with this system are promising benchmarks towards realizing larger, more complex systems of bound states.
109 - Dongxing Zhao 2018
We propose an all-optical scheme to control the photon statistics using hybrid quantum plasmonic system. With the aid of dressed states assisted quantum interference effects, it is shown that the photon correlations of a signal field can be continuou sly modulated from bunching to antibunching under the control of a pump field. Apart from the exact multimode model, a single-mode model and an analytical treatment are also provided to help us identify the roles of multimode coupling and quantum interference between probability amplitudes. The proposed scheme, in contrast to the cavity quantum electrodynamics methods, works well even in the bad cavity limit. These findings suggest that this composite system provides a feasible nanophotonic platform for active modulation of photon statistics and for future quantum devices.
Continuous-variable cluster states (CVCSs) can be supplemented with Gottesman-Kitaev-Preskill (GKP) states to form a hybrid cluster state with the power to execute universal, fault-tolerant quantum computing in a measurement-based fashion. As the res ource states that comprise a hybrid cluster state are of a very different nature, a natural question arises: Why do GKP states interface so well with CVCSs? To answer this question, we apply the recently introduced subsystem decomposition of a bosonic mode, which divides a mode into logical and gauge-mode subsystems, to three types of cluster state: CVCSs, GKP cluster states, and hybrid CV-GKP cluster states. We find that each of these contains a hidden qubit cluster state across their logical subsystems, which lies at the heart of their utility for measurement-based quantum computing. To complement the analytical approach, we introduce a simple graphical description of these CV-mode cluster states that depicts precisely how the hidden qubit cluster states are entangled with the gauge modes, and we outline how these results would extend to the case of finitely squeezed states. This work provides important insight that is both conceptually satisfying and helps to address important practical issues like when a simpler resource (such as a Gaussian state) can stand in for a more complex one (like a GKP state), leading to more efficient use of the resources available for CV quantum computing.
We report an experimental realization of one-way quantum computing on a two-photon four-qubit cluster state. This is accomplished by developing a two-photon cluster state source entangled both in polarization and spatial modes. With this special sour ce, we implemented a highly efficient Grovers search algorithm and high-fidelity two qubits quantum gates. Our experiment demonstrates that such cluster states could serve as an ideal source and a building block for rapid and precise optical quantum computation.
The physics of a many-particle system is determined by the correlations in its quantum state. Therefore, analyzing these correlations is the foremost task of many-body physics. Any a priori constraint for the properties of the global vs. the local st ates---the so-called marginals---would help in order to narrow down the wealth of possible solutions for a given many-body problem, however, little is known about such constraints. We derive an equality for correlation-related quantities of any multipartite quantum system composed of finite-dimensional local parties. This relation defines a necessary condition for the compatibility of the marginal properties with those of the joint state. While the equality holds both for pure and mixed states, the pure-state version containing only entanglement measures represents a fully general monogamy relation for entanglement. These findings have interesting implications in terms of conservation laws for correlations, and also with respect to topology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا