ﻻ يوجد ملخص باللغة العربية
Self-testing protocols are methods to determine the presence of shared entangled states in a device independent scenario, where no assumptions on the measurements involved in the protocol are made. A particular type of self-testing protocol, called parallel self-testing, can certify the presence of copies of a state, however such protocols typically suffer from the problem of requiring a number of measurements that increases with respect to the number of copies one aims to certify. Here we propose a procedure to transform single-copy self-testing protocols into a procedure that certifies the tensor product of an arbitrary number of (not necessarily equal) quantum states, without increasing the number of parties or measurement choices. Moreover, we prove that self-testing protocols that certify a state and rank-one measurements can always be parallelized to certify many copies of the state. Our results suggest a method to achieve device-independent unbounded randomness expansion with high-dimensional quantum states.
Given a Bell inequality, if its maximal quantum violation can be achieved only by a single set of measurements for each party or a single quantum state, up to local unitaries, one refers to such a phenomenon as self-testing. For instance, the maximal
Previous theoretical works showed that all pure two-qubit entangled states can generate one bit of local randomness and can be self-tested through the violation of proper Bell inequalities. We report an experiment in which nearly pure partially entan
An important problem in quantum information processing is the certification of the dimension of quantum systems without making assumptions about the devices used to prepare and measure them, that is, in a device-independent manner. A crucial question
Device-independent certification of quantum devices is of crucial importance for the development of secure quantum information protocols. So far, the most studied scenario corresponds to a system consisting of different non-characterized devices that
Quantum dialogue is a process of two way secure and simultaneous communication using a single channel. Recently, a Measurement Device Independent Quantum Dialogue (MDI-QD) protocol has been proposed (Quantum Information Processing 16.12 (2017): 305).