ترغب بنشر مسار تعليمي؟ اضغط هنا

Device-independent certification of high-dimensional quantum systems

75   0   0.0 ( 0 )
 نشر من قبل Adan Cabello
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An important problem in quantum information processing is the certification of the dimension of quantum systems without making assumptions about the devices used to prepare and measure them, that is, in a device-independent manner. A crucial question is whether such certification is experimentally feasible for high-dimensional quantum systems. Here we experimentally witness in a device-independent manner the generation of six-dimensional quantum systems encoded in the orbital angular momentum of single photons and show that the same method can be scaled, at least, up to dimension 13.

قيم البحث

اقرأ أيضاً

While the standard formulation of quantum theory assumes a fixed background causal structure, one can relax this assumption within the so-called process matrix framework. Remarkably, some processes, termed causally nonseparable, are incompatible with a definite causal order. We explore a form of certification of causal nonseparability in a semi-device-independent scenario where the involved parties receive trusted quantum inputs, but whose operations are otherwise uncharacterised. Defining the notion of causally nonseparable distributed measurements, we show that certain causally nonseparable processes which cannot violate any causal inequality, such as the canonical example of the quantum switch, can generate noncausal correlations in such a scenario. Moreover, by further imposing some natural structure to the untrusted operations, we show that all bipartite causally nonseparable process matrices can be certified with trusted quantum inputs.
When transforming pairs of independent quantum operations according to the fundamental rules of quantum theory, an intriguing phenomenon emerges: some such higher-order operations may act on the input operations in an indefinite causal order. Recentl y, the formalism of process matrices has been developed to investigate these noncausal properties of higher-order operations. This formalism predicts, in principle, statistics that ensure indefinite causal order even in a device-independent scenario, where the involved operations are not characterised. Nevertheless, all physical implementations of process matrices proposed so far require full characterisation of the involved operations in order to certify such phenomena. Here we consider a semi-device-independent scenario, which does not require all operations to be characterised. We introduce a framework for certifying noncausal properties of process matrices in this intermediate regime and use it to analyse the quantum switch, a well-known higher-order operation, to show that, although it can only lead to causal statistics in a device-independent scenario, it can exhibit noncausal properties in semi-device-independent scenarios. This proves that the quantum switch generates stronger noncausal correlations than it was previously known.
Certifying the entanglement of quantum states with Bell inequalities allows one to guarantee the security of quantum information protocols independently of imperfections in the measuring devices. Here we present a similar procedure for witnessing ent angled measurements, which play a central role in many quantum information tasks. Our procedure is termed semi-device-independent, as it uses uncharacterized quantum preparations of fixed Hilbert space dimension. Using a photonic setup, we experimentally certify an entangled measurement using measurement statistics only. We also apply our techniques to certify unentangled but nevertheless inherently quantum measurements.
Quantum measurements on a two-level system can have more than two independent outcomes, and in this case, the measurement cannot be projective. Measurements of this general type are essential to an operational approach to quantum theory, but so far, the nonprojective character of a measurement can only be verified experimentally by already assuming a specific quantum model of parts of the experimental setup. Here, we overcome this restriction by using a device-independent approach. In an experiment on pairs of polarization-entangled photonic qubits we violate by more than 8 standard deviations a Bell-like correlation inequality that is valid for all sets of two-outcome measurements in any dimension. We combine this with a device-independent verification that the system is best described by two qubits, which therefore constitutes the first device-independent certification of a nonprojective quantum measurement.
Minimal informationally complete positive operator-valued measures (MIC-POVMs) are special kinds of measurement in quantum theory in which the statistics of their $d^2$-outcomes are enough to reconstruct any $d$-dimensional quantum state. For this re ason, MIC-POVMs are referred to as standard measurements for quantum information. Here, we report an experiment with entangled photon pairs that certifies, for what we believe is the first time, a MIC-POVM for qubits following a device-independent protocol (i.e., modeling the state preparation and the measurement devices as black boxes, and using only the statistics of the inputs and outputs). Our certification is achieved under the assumption of freedom of choice, no communication, and fair sampling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا