ﻻ يوجد ملخص باللغة العربية
The shared response model provides a simple but effective framework to analyse fMRI data of subjects exposed to naturalistic stimuli. However when the number of subjects or runs is large, fitting the model requires a large amount of memory and computational power, which limits its use in practice. In this work, we introduce the FastSRM algorithm that relies on an intermediate atlas-based representation. It provides considerable speed-up in time and memory usage, hence it allows easy and fast large-scale analysis of naturalistic-stimulus fMRI data. Using four different datasets, we show that our method matches the performance of the original SRM algorithm while being about 5x faster and 20x to 40x more memory efficient. Based on this contribution, we use FastSRM to predict age from movie watching data on the CamCAN sample. Besides delivering accurate predictions (mean absolute error of 7.5 years), FastSRM extracts topographic patterns that are predictive of age, demonstrating that brain activity during free perception reflects age.
Functional magnetic resonance imaging (fMRI) is a crucial technology for gaining insights into cognitive processes in humans. Data amassed from fMRI measurements result in volumetric data sets that vary over time. However, analysing such data present
We propose a hierarchical Bayesian recurrent state space model for modeling switching network connectivity in resting state fMRI data. Our model allows us to uncover shared network patterns across disease conditions. We evaluate our method on the ADN
Blind source separation algorithms such as independent component analysis (ICA) are widely used in the analysis of neuroimaging data. In order to leverage larger sample sizes, different data holders/sites may wish to collaboratively learn feature rep
Understanding how certain brain regions relate to a specific neurological disorder has been an important area of neuroimaging research. A promising approach to identify the salient regions is using Graph Neural Networks (GNNs), which can be used to a
Multi-domain data are widely leveraged in vision applications taking advantage of complementary information from different modalities, e.g., brain tumor segmentation from multi-parametric magnetic resonance imaging (MRI). However, due to possible dat