ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-amplitude oscillations of foils for efficient propulsion

102   0   0.0 ( 0 )
 نشر من قبل Daniel Floryan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Large-amplitude oscillations of foils have been observed to yield greater propulsive efficiency than small-amplitude oscillations. Using scaling relations and experiments on foils with peak-to-peak trailing edge amplitudes of up to two chord lengths, we explain why this is so. In the process, we reveal the importance of drag, specifically how it can significantly reduce the efficiency, and how this effect depends on amplitude. The scaling relations and experimental data also reveal a fundamental tradeoff between high thrust and high efficiency, where the drag also plays a crucial role.

قيم البحث

اقرأ أيضاً

77 - Mukul Dave 2019
Bio-inspired oscillatory foil propulsion has the ability to traverse various propulsive modes by dynamically changing the foils heave and pitch kinematics. This research characterizes the propulsion properties and wake dynamics of a symmetric oscilla ting foil, specifically targeting the high Reynolds number operation of small to medium surface vessels whose propulsive specifications have a broad range of loads and speeds. An unsteady Reynolds-averaged Navier-Stokes (URANS) solver with a k-$omega$ SST turbulence model is used to sweep through pitch amplitude and frequency at two heave amplitudes of $h_0/c=1$ and $h_0/c=2$ at $Re=10^6$. At $h_0/c=2$, the maximum thrust coefficient is $C_T=8.2$ due to the large intercepted flow area of the foil, whereas at a decreased Strouhal number the thrust coefficient decreases and the maximum propulsive efficiency reaches 75%. Results illustrate the kinematics required to transition between the high-efficiency and high-thrust regimes at high Reynolds number and the resulting changes to the vortex wake structure. The unsteady vortex dynamics throughout the heave-pitch cycle strongly influence the characterization of thrust and propulsive efficiency, and are classified into flow regimes based on performance and vortex structure.
Marangoni propulsion is a form of locomotion wherein an asymmetric release of surfactant by a body located at the surface of a liquid leads to its directed motion. We present in this paper a mathematical model for Marangoni propulsion in the viscous regime. We consider the case of a thin rigid circular disk placed at the surface of a viscous fluid and whose perimeter has a prescribed concentration of an insoluble surfactant, to which the rest of its surface is impenetrable. Assuming a linearized equation of state between surface tension and surfactant concentration, we derive analytically the surfactant, velocity and pressure fields in the asymptotic limit of low Capillary, Peclet and Reynolds numbers. We then exploit these results to calculate the Marangoni propulsion speed of the disk. Neglecting the stress contribution from Marangoni flows is seen to over-predict the propulsion speed by 50%.
High-fidelity wall-resolved large-eddy simulations (LES) are utilized to investigate the flow-physics of small-amplitude pitch oscillations of an airfoil at Re = 100,000. The investigation of the unsteady phenomenon is done in the context of natural laminar flow airfoils, which can display sensitive dependence of the aerodynamic forces on the angle of attack in certain off-design conditions. The dynamic range of the pitch oscillations is chosen to be in this sensitive region. Large variations of the transition point on the suction-side of the airfoil are observed throughout the pitch cycle resulting in a dynamically rich flow response. Changes in the stability characteristics of a leading-edge laminar separation bubble has a dominating influence on the boundary layer dynamics and causes an abrupt change in the transition location over the airfoil. The LES procedure is based on a relaxation-term which models the dissipation of the smallest unresolved scales. The validation of the procedure is provided for channel flows and for a stationary wing at Re = 400,000.
We develop a highly efficient numerical method to simulate small-amplitude flapping propulsion by a flexible wing in a nearly inviscid fluid. We allow the wings elastic modulus and mass density to vary arbitrarily, with an eye towards optimizing thes e distributions for propulsive performance. The method to determine the wing kinematics is based on Chebyshev collocation of the 1D beam equation as coupled to the surrounding 2D fluid flow. Through small-amplitude analysis of the Euler equations (with trailing-edge vortex shedding), the complete hydrodynamics can be represented by a nonlocal operator that acts on the 1D wing kinematics. A class of semi-analytical solutions permits fast evaluation of this operator with $O(N log N)$ operations, where $N$ is the number of collocation points on the wing. This is in contrast to the minimum $O(N^2)$ operations required by a direct 2D fluid solver. The coupled wing-fluid problem is thus recast as a PDE with nonlocal operator, which we solve using a preconditioned iterative method. These techniques yield a solver of near-optimal complexity, $O(N log N)$, allowing one to rapidly search the infinite-dimensional parameter space of all possible material distributions and even perform optimization over this space.
We present here a comprehensive derivation for the speed of a small bottom-heavy sphere forced by a transverse acoustic field and thereby establish how density inhomogeneities may play a critical role in acoustic propulsion. The sphere is trapped at the pressure node of a standing wave whose wavelength is much larger than the sphere diameter. Due to its inhomogeneous density, the sphere oscillates in translation and rotation relative to the surrounding fluid. The perturbative flows induced by the spheres rotation and translation are shown to generate a rectified inertial flow responsible for a net mean force on the sphere that is able to propel the particle within the zero-pressure plane. To avoid an explicit derivation of the streaming flow, the propulsion speed is computed exactly using a suitable version of the Lorentz reciprocal theorem. The propulsion speed is shown to scale as the inverse of the viscosity, the cube of the amplitude of the acoustic field and is a non trivial function of the acoustic frequency. Interestingly, for some combinations of the constitutive parameters (fluid to solid density ratio, moment of inertia and centroid to center of mass distance), the direction of propulsion is reversed as soon as the frequency of the forcing acoustic field becomes larger than a certain threshold. The results produced by the model are compatible with both the observed phenomenology and the orders of magnitude of the measured velocities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا