ﻻ يوجد ملخص باللغة العربية
We develop a highly efficient numerical method to simulate small-amplitude flapping propulsion by a flexible wing in a nearly inviscid fluid. We allow the wings elastic modulus and mass density to vary arbitrarily, with an eye towards optimizing these distributions for propulsive performance. The method to determine the wing kinematics is based on Chebyshev collocation of the 1D beam equation as coupled to the surrounding 2D fluid flow. Through small-amplitude analysis of the Euler equations (with trailing-edge vortex shedding), the complete hydrodynamics can be represented by a nonlocal operator that acts on the 1D wing kinematics. A class of semi-analytical solutions permits fast evaluation of this operator with $O(N log N)$ operations, where $N$ is the number of collocation points on the wing. This is in contrast to the minimum $O(N^2)$ operations required by a direct 2D fluid solver. The coupled wing-fluid problem is thus recast as a PDE with nonlocal operator, which we solve using a preconditioned iterative method. These techniques yield a solver of near-optimal complexity, $O(N log N)$, allowing one to rapidly search the infinite-dimensional parameter space of all possible material distributions and even perform optimization over this space.
We present a hybrid spectral element-Fourier spectral method for solving the coupled system of Navier-Stokes and Cahn-Hilliard equations to simulate wall-bounded two-phase flows in a three-dimensional domain which is homogeneous in at least one direc
We investigate the effect of wing twist flexibility on lift and efficiency of a flapping-wing micro air vehicle capable of liftoff. Wings used previously were chosen to be fully rigid due to modeling and fabrication constraints. However, biological w
Marangoni propulsion is a form of locomotion wherein an asymmetric release of surfactant by a body located at the surface of a liquid leads to its directed motion. We present in this paper a mathematical model for Marangoni propulsion in the viscous
We present here a comprehensive derivation for the speed of a small bottom-heavy sphere forced by a transverse acoustic field and thereby establish how density inhomogeneities may play a critical role in acoustic propulsion. The sphere is trapped at
Large-amplitude oscillations of foils have been observed to yield greater propulsive efficiency than small-amplitude oscillations. Using scaling relations and experiments on foils with peak-to-peak trailing edge amplitudes of up to two chord lengths,