ﻻ يوجد ملخص باللغة العربية
The data deluge comes with high demands for data labeling. Crowdsourcing (or, more generally, ensemble learning) techniques aim to produce accurate labels via integrating noisy, non-expert labeling from annotators. The classic Dawid-Skene estimator and its accompanying expectation maximization (EM) algorithm have been widely used, but the theoretical properties are not fully understood. Tensor methods were proposed to guarantee identification of the Dawid-Skene model, but the sample complexity is a hurdle for applying such approaches---since the tensor methods hinge on the availability of third-order statistics that are hard to reliably estimate given limited data. In this paper, we propose a framework using pairwise co-occurrences of the annotator responses, which naturally admits lower sample complexity. We show that the approach can identify the Dawid-Skene model under realistic conditions. We propose an algebraic algorithm reminiscent of convex geometry-based structured matrix factorization to solve the model identification problem efficiently, and an identifiability-enhanced algorithm for handling more challenging and critical scenarios. Experiments show that the proposed algorithms outperform the state-of-art algorithms under a variety of scenarios.
Label Smoothing (LS) is an effective regularizer to improve the generalization of state-of-the-art deep models. For each training sample the LS strategy smooths the one-hot encoded training signal by distributing its distribution mass over the non gr
Unsupervised learning of the Dawid-Skene (D&S) model from noisy, incomplete and crowdsourced annotations has been a long-standing challenge, and is a critical step towards reliably labeling massive data. A recent work takes a coupled nonnegative matr
Pairwise similarities and dissimilarities between data points might be easier to obtain than fully labeled data in real-world classification problems, e.g., in privacy-aware situations. To handle such pairwise information, an empirical risk minimizat
Anomaly detection (AD) task corresponds to identifying the true anomalies from a given set of data instances. AD algorithms score the data instances and produce a ranked list of candidate anomalies, which are then analyzed by a human to discover the
There is a rapidly increasing interest in crowdsourcing for data labeling. By crowdsourcing, a large number of labels can be often quickly gathered at low cost. However, the labels provided by the crowdsourcing workers are usually not of high quality