ﻻ يوجد ملخص باللغة العربية
In this work, we provide an efficient and realistic data-driven approach to simulate astronomical images using deep generative models from machine learning. Our solution is based on a variant of the generative adversarial network (GAN) with progressive training methodology and Wasserstein cost function. The proposed solution generates naturalistic images of galaxies that show complex structures and high diversity, which suggests that data-driven simulations using machine learning can replace many of the expensive model-driven methods used in astronomical data processing.
Image-to-image translation plays a vital role in tackling various medical imaging tasks such as attenuation correction, motion correction, undersampled reconstruction, and denoising. Generative adversarial networks have been shown to achieve the stat
Generative adversarial networks (GANs) have shown promising results when applied on partial differential equations and financial time series generation. We investigate if GANs can also be used to approximate one-dimensional Ito stochastic differentia
Psychologists recognize Ravens Progressive Matrices as a very effective test of general human intelligence. While many computational models have been developed by the AI community to investigate different forms of top-down, deliberative reasoning on
We propose a novel Edge guided Generative Adversarial Network (EdgeGAN) for photo-realistic image synthesis from semantic layouts. Although considerable improvement has been achieved, the quality of synthesized images is far from satisfactory due to
Generative adversarial networks (GANs) generate data based on minimizing a divergence between two distributions. The choice of that divergence is therefore critical. We argue that the divergence must take into account the hypothesis set and the loss