ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthesising Solar Radio Images From Atmospheric Imaging Assembly Extreme-Ultraviolet Data

62   0   0.0 ( 0 )
 نشر من قبل Zhuofei Li
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

During non-flaring times, the radio flux of the Sun at the wavelength of a few centimeters to several tens of centimeters mostly originates from the thermal bremsstrahlung emission, very similar to the EUV radiation. Owing to such a proximity, it is feasible to investigate the relationship between the EUV emission and radio emission in a quantitative way. In this paper, we reconstruct the radio images of the Sun through the differential emission measure obtained from the multi-wavelength EUV images of the Atmospheric Imaging Assembly on board Solar Dynamic Observatory. Through comparing the synthetic radio images at 6 GHz with those observed by Siberian Radioheliograph, we find that the predicted radio flux is qualitatively consistent with the observed value, confirming thermal origin of the coronal radio emission during non-flaring times. The results further show that the predicted radio flux is closer to the observations in the case of including the contribution of the plasma with temperatures above 3 MK than in the case of only involving the low temperature plasma as was usually done in the era of pre-SDO. We also discuss the applications of the method and uncertainties of the results.

قيم البحث

اقرأ أيضاً

Sunquakes (SQs) have been routinely observed in the solar photosphere, but it is only recently that signatures of these events have been detected in the chromosphere. We investigate whether signatures of SQs are common in Ultraviolet (UV) continua, w hich sample the solar plasma several hundred km above where SQs are typically detected. We analyse observations from the Solar Dynamics Observatorys Atmospheric Imaging Assembly (SDO/AIA) 1600 {AA} and 1700 {AA} passbands, for SQ signatures induced by the flares of Solar Cycle 24. We base our analysis on the 62 SQs detected in the recent statistical study presented by Sharykin & Zosovichev (2020). We find that 9 out of 62 SQ candidates produced a response that is clearly detected in running difference images from the AIA 1600 {AA} and 1700 {AA} channels. A binary frequency filter with a width of 2 mHz, centred on 6 mHz, was applied to the data. The first signature of each SQ was detected at distances between 5.2 Mm to 25.7 Mm from the associated flare ribbon. Time-distance and regression analysis allowed us to calculate the apparent transverse velocities of the SQs in the UV datasets and found maximum velocities as high as 41 km s-1, 87 Mm away from the SQ source. Our analysis shows that flare induced SQ signatures can be detected in the SDO/AIA 1600 {AA} and 1700 {AA} passbands, hinting at their presence in the lower chromosphere. There was no apparent correlation between GOES flare classification, and the appearance of the SQ at these heights.
84 - J. Q. Sun , X. Cheng , M. D. Ding 2015
Magnetic reconnection, a change of magnetic field connectivity, is a fundamental physical process in which magnetic energy is released explosively. It is responsible for various eruptive phenomena in the universe. However, this process is difficult t o observe directly. Here, the magnetic topology associated with a solar reconnection event is studied in three dimensions (3D) using the combined perspectives of two spacecraft. The sequence of extreme ultraviolet (EUV) images clearly shows that two groups of oppositely directed and non-coplanar magnetic loops gradually approach each other, forming a separator or quasi-separator and then reconnecting. The plasma near the reconnection site is subsequently heated from $sim$1 to $ge$5 MK. Shortly afterwards, warm flare loops ($sim$3 MK) appear underneath the hot plasma. Other observational signatures of reconnection, including plasma inflows and downflows, are unambiguously revealed and quantitatively measured. These observations provide direct evidence of magnetic reconnection in a 3D configuration and reveal its origin.
We investigate the coronal imaging capabilities of the Solar UltraViolet Imager (SUVI) on the Geostationary Operational Environmental Satellite-R series spacecraft. Nominally Sun-pointed, SUVI provides solar images in six Extreme UltraViolet (EUV) wa velengths. On-orbit data indicated that SUVI had sufficient dynamic range and sensitivity to image the corona to the largest heights above the Sun to date while simultaneously imaging the Sun. We undertook a campaign to investigate the existence of the EUV signal well beyond the nominal Sun-centered imaging area of the solar EUV imagers. We off-pointed SUVI line-of-sight by almost one imaging area around the Sun. We present the details of the campaign conducted when the solar cycle is at near the minimum and some results that affirm the EUV presence to beyond three solar radii.
103 - Y. Zhong , Y. Dai , M. D. Ding 2021
Recent observations in extreme-ultraviolet (EUV) wavelengths reveal a new late phase in some solar flares, which is seen as a second peak in warm coronal emissions ($sim3$ MK) several tens of minutes to a few hours after the soft X-ray (SXR) peak. Th e origin of the EUV late phase (ELP) is explained by either a long-lasting cooling process in the long ELP loops, or a delayed energy ejection into the ELP loops well after the main flare heating. Using the observations with the emph{Solar Dynamics Observatory} (emph{SDO}), we investigate the production of the ELP in six homologous flares (F1--F6) originating from a complex active region (AR) NOAA 11283, with an emphasis on the emission characteristics of the flares. It is found that the main production mechanism of the ELP changes from additional heating in flare F1 to long-lasting cooling in flares F3--F6, with both mechanisms playing a role in flare F2. The transition is evidenced by an abrupt decrease of the time lag of the ELP peak, and the long-lasting cooling process in the majority of the flares is validated by a positive correlation between the flare ribbon fluence and the ELP peak intensity. We attribute the change in ELP production mechanism to an enhancement of the envelope magnetic field above the AR, which facilitates a more prompt and energetic heating of the ELP loops. In addition, the last and the only confined flare F6 exhibits an extremely large ELP. The different emission pattern revealed in this flare may reflect a different energy partitioning inside the ELP loops, which is due to a different magnetic reconnection process.
The Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory is a state-of-the-art imager with the potential to do unprecedented time-dependent multi-thermal analysis at every pixel on scales short compared to the radiative and condu ctive cooling times. Recent results, however, have identified missing spectral lines in the CHIANTI atomic physics data base, which is used to construct the instrument response functions. We have done differential emission measure analysis using simultaneous AIA and Hinode/EIS observations of six X-ray bright points. Our results not only support the conclusion that CHIANTI is incomplete near 131 angstroms, but more importantly, suggest that the peak temperature of the Fe VIII emissivity/response is likely to be closer to log T = 5.8 than to the current value of log T = 5.7. Using a revised emissivity/response calculation for Fe VIII, we find that the observed AIA 131-angstrom flux can be underestimated by about 1.25, which is smaller than previous comparisons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا