ترغب بنشر مسار تعليمي؟ اضغط هنا

Coronal Imaging with the Solar UltraViolet Imager

138   0   0.0 ( 0 )
 نشر من قبل Daniel Seaton
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the coronal imaging capabilities of the Solar UltraViolet Imager (SUVI) on the Geostationary Operational Environmental Satellite-R series spacecraft. Nominally Sun-pointed, SUVI provides solar images in six Extreme UltraViolet (EUV) wavelengths. On-orbit data indicated that SUVI had sufficient dynamic range and sensitivity to image the corona to the largest heights above the Sun to date while simultaneously imaging the Sun. We undertook a campaign to investigate the existence of the EUV signal well beyond the nominal Sun-centered imaging area of the solar EUV imagers. We off-pointed SUVI line-of-sight by almost one imaging area around the Sun. We present the details of the campaign conducted when the solar cycle is at near the minimum and some results that affirm the EUV presence to beyond three solar radii.



قيم البحث

اقرأ أيضاً

Metis is the first solar coronagraph designed for a space mission capable of performing simultaneous imaging of the off-limb solar corona in both visible and UV light. The observations obtained with Metis aboard the Solar Orbiter ESA-NASA observatory will enable us to diagnose, with unprecedented temporal coverage and spatial resolution, the structures and dynamics of the full corona from 1.7 $R_odot$ to about 9 $R_odot$. Due to the uniqueness of the Solar Orbiter mission profile, Metis will be able to observe the solar corona from a close vantage point (down to 0.28 AU), achieving out-of-ecliptic views with the increase of the orbit inclination over time. Moreover, observations near perihelion, during the phase of lower rotational velocity of the solar surface relative to the spacecraft, will allow longer-term studies of the coronal features. Thanks to a novel occultation design and a combination of a UV interference coating of the mirrors and a spectral bandpass filter, Metis images the solar corona simultaneously in the visible light band, between 580 and 640 nm, and in the UV H I Lyman-{alpha} line at 121.6 nm. The coronal images in both the UV Lyman-{alpha} and polarised visible light are obtained at high spatial resolution with a spatial scale down to about 2000 km and 15000 km at perihelion, in the cases of the visible and UV light, respectively. A temporal resolution down to 1 second can be achieved when observing coronal fluctuations in visible light. The Metis measurements will allow for complete characterisation of the main physical parameters and dynamics of the electron and neutral hydrogen/proton plasma components of the corona in the region where the solar wind undergoes acceleration and where the onset and initial propagation of coronal mass ejections take place, thus significantly improving our understanding of the region connecting the Sun to the heliosphere.
We report the smallest coronal jets ever observed in the quiet Sun with recent high resolution observations from the High Resolution Telescopes (HRI-EUV and HRI-Ly{alpha}) of the Extreme Ultraviolet Imager (EUI) onboard Solar Orbiter. In the HRI-EUV (174 {AA}) images, these microjets usually appear as nearly collimated structures with brightenings at their footpoints. Their average lifetime, projected speed, width, and maximum length are 4.6 min, 62 km s^(-1), 1.0 Mm, and 7.7 Mm, respectively. Inverted-Y shaped structures and moving blobs can be identified in some events. A subset of these events also reveal signatures in the HRI-Ly{alpha} (H I Ly{alpha} at 1216 {AA}) images and the extreme ultraviolet images taken by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. Our differential emission measure analysis suggests a multi-thermal nature and an average density of ~1.4x10^9 cm^(-3) for these microjets. Their thermal and kinetic energies were estimated to be ~3.9x10^24 erg and ~2.9x10^23 erg, respectively, which are of the same order of the released energy predicted by the nanoflare theory. Most events appear to be located at the edges of network lanes and magnetic flux concentrations, suggesting that these coronal microjets are likely generated by magnetic reconnection between small-scale magnetic loops and the adjacent network field.
We report observations of white-light ejecta in the low corona, for two X-class flares on the 2013 May 13, using data from the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory. At least two distinct kinds of sources appeared ( chromospheric and coronal), in the early and later phases of flare development, in addition to the white-light footpoint sources commonly observed in the lower atmosphere. The gradual emissions have a clear identification with the classical loop-prominence system, but are brighter than expected and possibly seen here in the continuum rather than line emission. We find the HMI flux exceeds the radio/X-ray interpolation of the bremsstrahlung produced in the flare soft X-ray sources by at least one order of magnitude. This implies the participation of cooler sources that can produce free-bound continua and possibly line emission detectable by HMI. One of the early sources dynamically resembles coronal rain, appearing at a maximum apparent height and moving toward the photosphere at an apparent constant projected speed of 134 $pm$ 8 $mathrm{km s^{-1}}$. Not much literature exists on the detection of optical continuum sources above the limb of the Sun by non-coronagraphic instruments, and these observations have potential implications for our basic understanding of flare development, since visible observations can in principle provide high spatial and temporal resolution.
The Wide-field Imager for Solar PRobe (WISPR) obtained the first high-resolution images of coronal rays at heights below 15 R$_odot$ when the Parker Solar Probe (PSP) was located inside 0.25 au during the first encounter. We exploit these remarkable images to reveal the structure of coronal rays at scales that are not easily discernible in images taken from near 1 au. To analyze and interpret WISPR observations, which evolve rapidly both radially and longitudinally, we construct a latitude versus time map using the full WISPR dataset from the first encounter. From the exploitation of this map and also from sequential WISPR images, we show the presence of multiple substructures inside streamers and pseudostreamers. WISPR unveils the fine-scale structure of the densest part of streamer rays that we identify as the solar origin of the heliospheric plasma sheet typically measured in situ in the solar wind. We exploit 3D magnetohydrodynamic models, and we construct synthetic white-light images to study the origin of the coronal structures observed by WISPR. Overall, including the effect of the spacecraft relative motion toward the individual coronal structures, we can interpret several observed features by WISPR. Moreover, we relate some coronal rays to folds in the heliospheric current sheet that are unresolved from 1 au. Other rays appear to form as a result of the inherently inhomogeneous distribution of open magnetic flux tubes.
The Multi-slit Solar Explorer (MUSE) is a proposed NASA MIDEX mission, currently in Phase A, composed of a multi-slit EUV spectrograph (in three narrow spectral bands centered around 171A, 284A, and 108A) and an EUV context imager (in two narrow pass bands around 195A and 304A). MUSE will provide unprecedented spectral and imaging diagnostics of the solar corona at high spatial (<0.5 arcsec), and temporal resolution (down to ~0.5s) thanks to its innovative multi-slit design. By obtaining spectra in 4 bright EUV lines (Fe IX 171A , Fe XV 284A, Fe XIX-Fe XXI 108A) covering a wide range of transition region and coronal temperatures along 37 slits simultaneously, MUSE will for the first time be able to freeze (at a cadence as short as 10 seconds) with a spectroscopic raster the evolution of the dynamic coronal plasma over a wide range of scales: from the spatial scales on which energy is released (~0.5 arcsec) to the large-scale often active-region size (170 arcsec x 170 arcsec) atmospheric response. We use advanced numerical modeling to showcase how MUSE will constrain the properties of the solar atmosphere on the spatio-temporal scales (~0.5 arcsec, ~20 seconds) and large field-of-view on which various state-of-the-art models of the physical processes that drive coronal heating, solar flares and coronal mass ejections (CMEs) make distinguishing and testable predictions. We describe how the synergy between MUSE, the single-slit, high-resolution Solar-C EUVST spectrograph, and ground-based observatories (DKIST and others) can address how the solar atmosphere is energized, and the critical role MUSE plays because of the multi-scale nature of the physical processes involved. In this first paper, we focus on how comparisons between MUSE observations and theoretical models will significantly further our understanding of coronal heating mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا