ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of the dilepton electromagnetic decays of $chi_{cJ}(1P)$

217   0   0.0 ( 0 )
 نشر من قبل Xuan-He Wang
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, the dilepton electromagnetic decays $chi_{cJ}(1P) to J/psi e^+e^-$ and $chi_{cJ}(1P) to Jpsi mu^+mu^-$, where $chi_{cJ}$ denotes $chi_{c0}$, $chi_{c1}$ and $chi_{c2}$, are calculated systematically in the improved Bethe-Salpeter method. The numerical results of decay widths and the invariant mass distributions of the final lepton pairs are given. The comparison is made with the recently measured experimental data of BESIII. It is shown that for the cases including $e^+e^-$, the gauge invariance is decisive and should be considered carefully. For the processes of $chi_{cJ}(1P) to J/psi e^+e^-$, the branching fraction are: $mathcal{B}[chi_{c0}(1P) to J/psi e^+e^-]=1.06^{+0.16}_{-0.18} times 10^{-4}$, $mathcal{B}[chi_{c1}(1P) to J/psi e^+e^-]=2.88^{+0.50}_{-0.53} times 10^{-3}$, and $mathcal{B}[chi_{c2}(1P) to J/psi e^+e^-]=1.74^{+0.22}_{-0.21} times 10^{-3}$. The calculated branching fractions of $chi_{cJ}(1P)to J/psi mu^+mu^-$ channels are: $mathcal{B}[chi_{c0}(1P) to J/psi mu^+mu^-]=3.80^{+0.59}_{-0.64} times 10^{-6}$, $mathcal{B}[chi_{c1}(1P) to J/psi mu^+mu^-]=2.04^{+0.36}_{-0.38} times 10^{-4}$, and $mathcal{B}[chi_{c2}(1P) to J/psi mu^+mu^-]=1.66^{+0.19}_{-0.19} times 10^{-4}$.



قيم البحث

اقرأ أيضاً

Using $4.48 times 10^{8}$ $psi(3686)$ events collected with the BESIII detector, we search for the decays $chi_{cJ} rightarrow mu^{+}mu^{-}J/psi$ through the radiative decays $psi(3686) rightarrow gammachi_{cJ}$, where $J=0,1,2$. The decays $chi_{c1, 2} rightarrow mu^{+}mu^{-}J/psi$ are observed, and the corresponding branching fractions are measured to be $mathcal{B}(chi_{c1} rightarrow mu^{+}mu^{-}J/psi) = (2.51 pm 0.18 pm 0.20)times10^{-4}$ and $mathcal{B}(chi_{c2} rightarrow mu^{+}mu^{-}J/psi) = (2.33 pm 0.18 pm 0.29)times10^{-4}$, where the first uncertainty is statistical and the second one systematic. No significant $chi_{c0} rightarrow mu^{+}mu^{-}J/psi$ decay is observed, and the upper limit on the branching fraction is determined to be $2.0times10^{-5}$ at 90% confidence level. Also, we present a study of di-muon invariant mass dependent transition form factor for the decays $chi_{c1,2} rightarrow mu^{+}mu^{-}J/psi$.
We report a study of radiative decays of chi_{bJ}(1P)(J=0,1,2) mesons into 74 hadronic final states comprising charged and neutral pions, kaons, protons; out of these, 41 modes are observed with at least 5 standard deviation significance. Our measure ments not only improve the previous measurements by the CLEO Collaboration but also lead to first observations in many new modes. The large sample allows us to probe the total decay width of the chi_{b0}(1P). In the absence of a statistically significant result, a 90% confidence-level upper limit is set on the width at Gamma_{total}< 2.4 MeV. Our results are based on 24.7 fb^{-1} of e+e- collision data recorded by the Belle detector at the Upsilon(2S) resonance, corresponding to (157.8pm3.6)times10^6 Upsilon(2S) decays.
Decays $chi_{cJ}~(J=0,1,2)toomegaphi$ are studied using $(448.1pm2.9)times 10^{6} ~psi(3686)$ events collected with the BESIII detector in 2009 and 2012. In addition to the previously established $chi_{c0}toomegaphi$, first observation of $chi_{c1} t o omega phi$ is reported in this paper. The measured product branching fractions are ${cal{B}}(psi(3686)togammachi_{c0})times{cal{B}}(chi_{c0}toomegaphi)=(13.83pm 0.70pm 1.01)times10^{-6}$ and ${cal{B}}(psi(3686)togammachi_{c1})times{cal{B}}(chi_{c1}toomegaphi)=(2.67pm 0.31pm 0.27)times10^{-6}$, and the absolute branching fractions are ${cal{B}}(chi_{c0}toomegaphi)=(13.84pm 0.70pm 1.08)times10^{-5}$ and ${cal{B}}(chi_{c1}toomegaphi)=(2.80pm 0.32pm 0.30)times10^{-5}$. We also find a strong evidence for $chi_{c2}toomegaphi$ with a statistical significance of 4.8$sigma$, and the corresponding product and absolute branching fractions are measured to be ${cal{B}}(psi(3686)togammachi_{c2})times{cal{B}}(chi_{c2}toomegaphi)=(0.91pm0.23pm0.12)times10^{-6} $ and ${cal{B}}(chi_{c2}toomegaphi)=(1.00pm0.25pm0.14)times10^{-5}$. Here, the first errors are statistical and the second ones systematic.
Using 106 $times 10^{6}$ $psi^{prime}$ decays collected with the BESIII detector at the BEPCII, three decays of $chi_{cJ}$ ($J=0,1,2$) with baryon pairs ($llb$, $ssb$, $SSB$) in the final state have been studied. The branching fractions are measured to be $cal{B}$$(chi_{c0,1,2}rightarrowLambdabarLambda) =(33.3 pm 2.0 pm 2.6)times 10^{-5}$, $(12.2 pm 1.1 pm 1.1)times 10^{-5}$, $(20.8 pm 1.6 pm 2.3)times 10^{-5}$; $cal{B}$$(chi_{c0,1,2}rightarrowSigma^{0}barSigma^{0})$ = $(47.8 pm 3.4 pm 3.9)times 10^{-5}$, $(3.8 pm 1.0 pm 0.5)times 10^{-5}$, $(4.0 pm 1.1 pm 0.5) times 10^{-5}$; and $cal{B}$$(chi_{c0,1,2}rightarrowSigma^{+}barSigma^{-})$ = $(45.4 pm 4.2 pm 3.0)times 10^{-5}$, $(5.4 pm 1.5 pm 0.5)times 10^{-5}$, $(4.9 pm 1.9 pm 0.7)times 10^{-5}$, where the first error is statistical and the second is systematic. Upper limits on the branching fractions for the decays of $chi_{c1,2}rightarrowSigma^{0}barSigma^{0}$, $Sigma^{+}barSigma^{-}$, are estimated to be $cal{B}$$(chi_{c1}rightarrowSigma^{0}barSigma^{0}) < 6.2times 10^{-5}$, $cal{B}$$(chi_{c2}rightarrowSigma^{0}barSigma^{0}) < 6.5times 10^{-5}$, $cal{B}$$(chi_{c1}rightarrowSigma^{+}barSigma^{-}) < 8.7times 10^{-5}$ and $cal{B}$$(chi_{c2}rightarrowSigma^{+}barSigma^{-}) < 8.8times 10^{-5}$ at the 90% confidence level.
Using a data sample of $(448.1pm2.9)times10^{6}$ $psi(3686)$ decays collected by the BESIII detector at the Beijing Electron Positron Collider (BEPCII), we observe the decays $chi_{cJ}to phiphieta~(J=0,~1,~2)$, where the $chi_{cJ}$ are produced via t he radiative processes $psi(3686)togammachi_{cJ}$. The branching fractions are measured to be $mathcal B(chi_{c0}tophiphieta)=(8.41pm0.74pm0.62)times10^{-4}$, $mathcal B(chi_{c1}tophiphieta)=(2.96pm0.43pm0.22)times 10^{-4}$, and $mathcal B(chi_{c2} to phiphieta)=(5.33pm0.52pm0.39) times 10^{-4}$, where the first uncertainties are statistical and the second are systematic. We also search for intermediate states in the $phiphi$ or $etaphi$ combinations, but no significant structure is seen due to the limited statistics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا