ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of chi_{bJ}(1P) Properties in the Radiative Upsilon(2S) Decays

134   0   0.0 ( 0 )
 نشر من قبل Saurabh Sandilya
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a study of radiative decays of chi_{bJ}(1P)(J=0,1,2) mesons into 74 hadronic final states comprising charged and neutral pions, kaons, protons; out of these, 41 modes are observed with at least 5 standard deviation significance. Our measurements not only improve the previous measurements by the CLEO Collaboration but also lead to first observations in many new modes. The large sample allows us to probe the total decay width of the chi_{b0}(1P). In the absence of a statistically significant result, a 90% confidence-level upper limit is set on the width at Gamma_{total}< 2.4 MeV. Our results are based on 24.7 fb^{-1} of e+e- collision data recorded by the Belle detector at the Upsilon(2S) resonance, corresponding to (157.8pm3.6)times10^6 Upsilon(2S) decays.



قيم البحث

اقرأ أيضاً

We report results from a study of hadronic transitions of the $chi_{bJ}(nP)$ states of bottomonium at Belle. The $P$-wave states are reconstructed in transitions to the $Upsilon(1S)$ with the emission of an $omega$ meson. The transitions of the $n=2$ triplet states provide a unique laboratory in which to study nonrelativistic quantum chromodynamics, as the kinematic threshold for production of an $omega$ and $Upsilon(1S)$ lies between the $J=0$ and $J=1$ states. A search for the $chi_{bJ}(3P)$ states is also reported.
We report the first observation of the radiative decay of the $Upsilon(1S)$ into a charmonium state. The statistical significance of the observed signal of $Upsilon(1S) to gamma chi_{c1}$ is 6.3 standard deviations including systematics. The branchin g fraction is calculated to be Br($Upsilon(1S) to gamma chi_{c1}$) = (4.7^{+2.4}_{-1.8} (stat) ^{+0.4}_{-0.5} (sys)) * 10^{-5}. We also searched for $Upsilon(1S)$ radiative decays into $chi_{c0,2}$ and $eta_c(1S,2S)$ and set upper limits on their branching fractions. These results are obtained from a 24.9 fb^{-1} data sample collected with the Belle detector at the KEKB asymmetric-energy $e^+e^-$ collider at a center-of-mass energy equal to the $Upsilon(2S)$ mass using $Upsilon(1S)$ tagging by the $Upsilon(2S) to Upsilon(1S) pi^+pi^-$ transitions.
We search for bottomonium states in Upsilon(2S)-> (bb-bar) gamma decays with an integrated luminosity of 24.7fb^-1 recorded at the Upsilon(2S) resonance with the Belle detector at KEK, containing (157.8+-3.6) X 10^6 Upsilon(2S) events. The (bb-bar) s ystem is reconstructed in 26 exclusive hadronic final states composed of charged pions, kaons, protons, and K^0_S mesons. We find no evidence for the state recently observed around 9975 MeV (X_(bb-bar)) in an analysis based on a data sample of 9.3 X 10^6 Upsilon(2S) events collected with the CLEO III detector. We set a 90 % confidence-level upper limit on the branching fraction B[Upsilon(2S)-> X_(bb-bar) gamma] X sum_i{B[X_(bb-bar)-> h_i]}< 4.9 X 10^-6, summed over the exclusive hadronic final states employed in our analysis. This result is an order of magnitude smaller than the measurement reported with CLEO data. We also set an upper limit for the eta_b(1S) state of B[Upsilon(2S)-> eta_b(1S) gamma] X sum_i{B[eta_b(1S)-> h_i]}< 3.7 X 10^-6.
Using 9.32, 5.88 million Upsilon(2S,3S) decays taken with the CLEO-III detector, we obtain five product branching fractions for the exclusive processes Upsilon(2S) => gamma chi_{b0,1,2}(1P) => gamma gamma Upsilon(1S) and Upsilon(3S) => gamma chi_{b1, 2}(1P) => gamma gamma Upsilon(1S). We observe the transition chi_{b0}(1P) => gamma Upsilon(1S) for the first time. Using the known branching fractions for B[Upsilon(2S) => gamma chi_{bJ}(1P)], we extract values for B[chi_{bJ}(1P) => gamma Upsilon(1S)] for J=0, 1, 2. In turn, these values can be used to unfold the Upsilon(3S) product branching fractions to obtain values for B[Upsilon(3S) => gamma chi_{b1,2}(1P) for the first time individually. Comparison of these with each other and with the branching fraction B[Upsilon(3S) => gamma chi_{b0}] previously measured by CLEO provides tests of relativistic corrections to electric dipole matrix elements.
In this paper, the dilepton electromagnetic decays $chi_{cJ}(1P) to J/psi e^+e^-$ and $chi_{cJ}(1P) to Jpsi mu^+mu^-$, where $chi_{cJ}$ denotes $chi_{c0}$, $chi_{c1}$ and $chi_{c2}$, are calculated systematically in the improved Bethe-Salpeter method . The numerical results of decay widths and the invariant mass distributions of the final lepton pairs are given. The comparison is made with the recently measured experimental data of BESIII. It is shown that for the cases including $e^+e^-$, the gauge invariance is decisive and should be considered carefully. For the processes of $chi_{cJ}(1P) to J/psi e^+e^-$, the branching fraction are: $mathcal{B}[chi_{c0}(1P) to J/psi e^+e^-]=1.06^{+0.16}_{-0.18} times 10^{-4}$, $mathcal{B}[chi_{c1}(1P) to J/psi e^+e^-]=2.88^{+0.50}_{-0.53} times 10^{-3}$, and $mathcal{B}[chi_{c2}(1P) to J/psi e^+e^-]=1.74^{+0.22}_{-0.21} times 10^{-3}$. The calculated branching fractions of $chi_{cJ}(1P)to J/psi mu^+mu^-$ channels are: $mathcal{B}[chi_{c0}(1P) to J/psi mu^+mu^-]=3.80^{+0.59}_{-0.64} times 10^{-6}$, $mathcal{B}[chi_{c1}(1P) to J/psi mu^+mu^-]=2.04^{+0.36}_{-0.38} times 10^{-4}$, and $mathcal{B}[chi_{c2}(1P) to J/psi mu^+mu^-]=1.66^{+0.19}_{-0.19} times 10^{-4}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا