ﻻ يوجد ملخص باللغة العربية
Learning interpretable representations of data remains a central challenge in deep learning. When training a deep generative model, the observed data are often associated with certain categorical labels, and, in parallel with learning to regenerate data and simulate new data, learning an interpretable representation of each class of data is also a process of acquiring knowledge. Here, we present a novel generative model, referred to as the Supervised Vector Quantized Variational AutoEncoder (S-VQ-VAE), which combines the power of supervised and unsupervised learning to obtain a unique, interpretable global representation for each class of data. Compared with conventional generative models, our model has three key advantages: first, it is an integrative model that can simultaneously learn a feature representation for individual data point and a global representation for each class of data; second, the learning of global representations with embedding codes is guided by supervised information, which clearly defines the interpretation of each code; and third, the global representations capture crucial characteristics of different classes, which reveal similarity and differences of statistical structures underlying different groups of data. We evaluated the utility of S-VQ-VAE on a machine learning benchmark dataset, the MNIST dataset, and on gene expression data from the Library of Integrated Network-Based Cellular Signatures (LINCS). We proved that S-VQ-VAE was able to learn the global genetic characteristics of samples perturbed by the same class of perturbagen (PCL), and further revealed the mechanism correlations between PCLs. Such knowledge is crucial for promoting new drug development for complex diseases like cancer.
We would like to learn a representation of the data which decomposes an observation into factors of variation which we can independently control. Specifically, we want to use minimal supervision to learn a latent representation that reflects the sema
This paper proposes Dirichlet Variational Autoencoder (DirVAE) using a Dirichlet prior for a continuous latent variable that exhibits the characteristic of the categorical probabilities. To infer the parameters of DirVAE, we utilize the stochastic gr
Variational autoencoder (VAE) is a widely used generative model for learning latent representations. Burda et al. in their seminal paper showed that learning capacity of VAE is limited by over-pruning. It is a phenomenon where a significant number of
Learning from heterogeneous data poses challenges such as combining data from various sources and of different types. Meanwhile, heterogeneous data are often associated with missingness in real-world applications due to heterogeneity and noise of inp
Learning interpretable and disentangled representations is a crucial yet challenging task in representation learning. In this work, we focus on semi-supervised disentanglement learning and extend work by Locatello et al. (2019) by introducing another