ﻻ يوجد ملخص باللغة العربية
Large magnetoresistance effect controlled by electric field rather than magnetic field or electric current is a preferable routine for designing low power consumption magnetoresistance-based spintronic devices. Here we propose an electric-field controlled antiferromagnetic (AFM) tunnel junction with structure of piezoelectric substrate/Mn3Pt/SrTiO3/Pt operating by the magnetic phase transition (MPT) of antiferromagnet Mn3Pt through its magneto-volume effect. The transport properties of the proposed AFM tunnel junction have been investigated by employing first-principles calculations. Our results show that a magnetoresistance over hundreds of percent is achievable when Mn3Pt undergoes MPT from a collinear AFM state to a non-collinear AFM state. Band structure analysis based on density functional calculations shows that the large TMR can be attributed to the joint effect of significant different Fermi surface of Mn3Pt at two AFM phases and the band symmetry filtering effect of the SrTiO3 tunnel barrier. In addition, other than single-crystalline tunnel barrier, we also discuss the robustness of the proposed magnetoresistance effect by considering amorphous AlOx barrier. Our results may open perspective way for effectively electrical writing and reading of the AFM state and its application in energy efficient magnetic memory devices.
In recent years, the field of antiferromagnetic spintronics has been substantially advanced. Electric-field control is a promising approach to achieving ultra-low power spintronic devices via suppressing Joule heating. In this article, cutting-edge r
We consider a tunnel junction formed between a fixed electrode and an oscillating one. Accumulation of the charge on the junction capacitor induces a force on the nano-mechanical oscillator. The junction is voltage biased and connected in series with
We report on the fabrication and characterization of vertical spin-valve structures using a thick epitaxial MgO barrier as spacer layer and a graphene-passivated Ni film as bottom ferromagnetic electrode. The devices show robust and scalable tunnel m
A spin-tunnel-junction based on manganites, with La$_{1-x}$Sr$_x$MnO$_3$ (LSMO) as ferromagnetic metallic electrodes and the undoped parent compound LaMnO$_3$ (LMO) as insulating barrier, is here theoretically discussed using double exchange model Ha
Linear in the wave-vector terms of an electron Hamiltonian play an important role in topological insulators and spintronic devices. Here we demonstrate how an external electric field controls the magnitude of a linear-in-K term in the exciton Hamilto