ترغب بنشر مسار تعليمي؟ اضغط هنا

The ASKAP-EMU Early Science Project:Radio Continuum Survey of the Small Magellanic Cloud

69   0   0.0 ( 0 )
 نشر من قبل Tana Joseph
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present two new radio continuum images from the Australian Square Kilometre Array Pathfinder (ASKAP) survey in the direction of the Small Magellanic Cloud (SMC). These images are part of the Evolutionary Map of the Universe (EMU) Early Science Project (ESP) survey of the Small and Large Magellanic Clouds. The two new source lists produced from these images contain radio continuum sources observed at 960 MHz (4489 sources) and 1320 MHz (5954 sources) with a bandwidth of 192 MHz and beam sizes of 30.0x30.0 and 16.3x15.1, respectively. The median Root Mean Squared (RMS) noise values are 186$mu$Jy beam$^{-1}$ (960 MHz) and 165$mu$Jy beam$^{-1}$ (1320 MHz). To create point source catalogues, we use these two source lists, together with the previously published Molonglo Observatory Synthesis Telescope (MOST) and the Australia Telescope Compact Array (ATCA) point source catalogues to estimate spectral indices for the whole population of radio point sources found in the survey region. Combining our ASKAP catalogues with these radio continuum surveys, we found 7736 point-like sources in common over an area of 30 deg$^2$. In addition, we report the detection of two new, low surface brightness supernova remnant candidates in the SMC. The high sensitivity of the new ASKAP ESP survey also enabled us to detect the bright end of the SMC planetary nebula sample, with 22 out of 102 optically known planetary nebulae showing point-like radio continuum emission. Lastly, we present several morphologically interesting background radio galaxies.

قيم البحث

اقرأ أيضاً

We present an analysis of a new 120 deg$^{2}$ radio continuum image of the Large Magellanic Cloud (LMC) at 888 MHz with a bandwidth of 288 MHz and beam size of $13rlap{.}^{primeprime}9times12rlap{.}^{primeprime}1$, from the Australian Square Kilometr e Array Pathfinder (ASKAP) processed as part of the Evolutionary Map of the Universe (EMU) survey. The median Root Mean Squared noise is 58 $mu$Jy beam$^{-1}$. We present a catalogue of 54,612 sources, divided over a GOLD list (30,866 sources) complete down to 0.5 mJy uniformly across the field, a SILVER list (22,080 sources) reaching down to $<$ 0.2 mJy and a BRONZE list (1,666 sources) of visually inspected sources in areas of high noise and/or near bright complex emission. We discuss detections of planetary nebulae and their radio luminosity function, young stellar objects showing a correlation between radio luminosity and gas temperature, novae and X-ray binaries in the LMC, and active stars in the Galactic foreground that may become a significant population below this flux level. We present examples of diffuse emission in the LMC (H II regions, supernova remnants, bubbles) and distant galaxies showcasing spectacular interaction between jets and intracluster medium. Among 14,333 infrared counterparts of the predominantly background radio source population we find that star-forming galaxies become more prominent below 3 mJy compared to active galactic nuclei. We combine the new 888 MHz data with archival Australia Telescope Compact Array data at 1.4 GHz to determine spectral indices; the vast majority display synchrotron emission but flatter spectra occur too. We argue that the most extreme spectral index values are due to variability.
Feedback from massive stars plays a critical role in the evolution of the Universe by driving powerful outflows from galaxies that enrich the intergalactic medium and regulate star formation. An important source of outflows may be the most numerous g alaxies in the Universe: dwarf galaxies. With small gravitational potential wells, these galaxies easily lose their star-forming material in the presence of intense stellar feedback. Here, we show that the nearby dwarf galaxy, the Small Magellanic Cloud (SMC), has atomic hydrogen outflows extending at least 2 kiloparsecs (kpc) from the star-forming bar of the galaxy. The outflows are cold, $T<400~{rm K}$, and may have formed during a period of active star formation $25 - 60$ million years (Myr) ago. The total mass of atomic gas in the outflow is $sim 10^7$ solar masses, ${rm M_{odot}}$, or $sim 3$% of the total atomic gas of the galaxy. The inferred mass flux in atomic gas alone, $dot{M}_{HI}sim 0.2 - 1.0~{rm M_{odot}~yr^{-1}}$, is up to an order of magnitude greater than the star formation rate. We suggest that most of the observed outflow will be stripped from the SMC through its interaction with its companion, the Large Magellanic Cloud (LMC), and the Milky Way, feeding the Magellanic Stream of hydrogen encircling the Milky Way.
We use new high-resolution HI data from the Australian Square Kilometre Array Pathfinder (ASKAP) to investigate the dynamics of the Small Magellanic Cloud (SMC). We model the HI gas component as a rotating disc of non-negligible angular size, moving into the plane of the sky and undergoing nutation/precession motions. We derive a high-resolution (~ 10 pc) rotation curve of the SMC out to R ~ 4 kpc. After correcting for asymmetric drift, the circular velocity slowly rises to a maximum value of Vc ~ 55 km/s at R ~ 2.8 kpc and possibly flattens outwards. In spite of the SMC undergoing strong gravitational interactions with its neighbours, its HI rotation curve is akin to that of many isolated gas-rich dwarf galaxies. We decompose the rotation curve and explore different dynamical models to deal with the unknown three-dimensional shape of the mass components (gas, stars and dark matter). We find that, for reasonable mass-to-light ratios, a dominant dark matter halo with mass M(R<4 kpc) = 1-1.5 x 10^9 solar masses is always required to successfully reproduce the observed rotation curve, implying a large baryon fraction of 30%-40%. We discuss the impact of our assumptions and the limitations of deriving the SMC kinematics and dynamics from HI observations.
Looking deep into the space in search for truth has been a long time goal of humanity. With the development of new technologies and observational techniques, we are now well equipped to see objects billions of light years away from us. In this study we are going to discuss some of the challenges radio astronomers face while observing radio continuum sources. We will discuss issues related to rms noise, confusion, position accuracy, shot noise and how these issues can affect observation results, data analysis and the science goals we are trying to achieve. We will mainly focus on the Evolutionary Map of the Universe (EMU-ASKAP) sky survey, EMU Early science survey and Westerbork Observations of the Deep APERTIF Northern sky (WODAN), for our study. The study will also be useful for future surveys like with possible continuum surveys through MeerKAT (e.g. MIGHTEE) and SKA-1. The late time Integrated Sachs-Wolfe (ISW) effect detection is one of the major areas of research related to dark energy cosmology. We will particularly discuss how technical, data analysis and mapping issues, affect galaxy over/under density dependent science goals like the detection of the late time Integrated Sachs-Wolfe (ISW) effect through wide field radio continuum surveys.
We present new observations of 34 YSO candidates in the SMC. The anchor of the analysis is a set of Spitzer-IRS spectra, supplemented by groundbased 3-5 micron spectra, Spitzer and NIR photometry, optical spectroscopy and radio data. The sources SEDs and spectral indices are consistent with embedded YSOs; prominent silicate absorption is observed in the spectra of at least ten sources, silicate emission is observed towards four sources. PAH emission is detected towards all but two sources. Based on band ratios (in particular the strength of the 11.3 micron and the weakness of the 8.6 micron bands) PAH emission towards SMC YSOs is dominated by predominantly small neutral grains. Ice absorption is observed towards fourteen sources in the SMC. The comparison of H2O and CO2 ice column densities for SMC, LMC and Galactic samples suggests that there is a significant H2O column density threshold for the detection of CO2 ice. This supports the scenario proposed by Oliveira et al. (2011), where the reduced shielding in metal-poor environments depletes the H2O column density in the outer regions of the YSO envelopes. No CO ice is detected towards the SMC sources. Emission due to pure-rotational 0-0 transitions of H2 is detected towards the majority of SMC sources, allowing us to estimate rotational temperatures and column densities. All but one source are spectroscopically confirmed as SMC YSOs. Of the 33 YSOs identified in the SMC, 30 sources populate different stages of massive stellar evolution. The remaining three sources are classified as intermediate-mass YSOs with a thick dusty disc and a tenuous envelope still present. We propose one of the sources is a D-type symbiotic system, based on the presence of Raman, H and He emission lines in the optical spectrum, and silicate emission in the IRS-spectrum. This would be the first dust-rich symbiotic system identified in the SMC. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا