ﻻ يوجد ملخص باللغة العربية
We present a simple interpolation formula for the rate of an electron transfer reaction as a function of the electronic coupling strength. The formula only requires the calculation of Fermi Golden Rule and Born-Oppenheimer rates and so can be combined with any methods that are able to calculate these rates. We first demonstrate the accuracy of the formula by applying it to a one dimensional scattering problem for which the exact quantum mechanical, Fermi Golden Rule, and Born-Oppenheimer rates are readily calculated. We then describe how the formula can be combined with the Wolynes theory approximation to the Golden Rule rate, and the ring polymer molecular dynamics (RPMD) approximation to the Born-Oppenheimer rate, and used to capture the effects of nuclear tunnelling, zero point energy, and solvent friction on condensed phase electron transfer reactions. Comparison with exact hierarchical equations of motion (HEOM) results for a demanding set of spin-boson models shows that the interpolation formula has an error comparable to that of RPMD rate theory in the adiabatic limit, and that of Wolynes theory in non-adiabatic limit, and is therefore as accurate as any method could possibly be that attempts to generalise these methods to arbitrary electronic coupling strengths.
We present quantum mechanical calculations of Auger decay rates for two Rubidium Rydberg atoms with weakly overlapping electron clouds. We neglect exchange effects and consider tensor products of independent atom states forming an approximate basis o
We study a simple quantum mechanical symmetric donor-acceptor model for electron transfer (ET) with coupling to internal deformations. The model contains several basic properties found in biological ET in enzymes and photosynthetic centers; it produc
The effect of solvation on the electron transfer (ET) rate processes is investigated on the basis of the exact theory constructed in J. Phys. Chem. B Vol. 110, (2006); quant-ph/0604071. The nature of solvation is studied in a close relation with the
We perform the fixed-node diffuse Monte Carlo (FN DMC) calculations to determine the barrier height and reaction energy of a critical reaction, the H-transfer reaction from syn-CH3CHOO to vinyl hydroperoxide. The FN DMC barrier height is found to be
We used molecular dynamics simulations and the path sampling technique known as forward flux sampling to study homogeneous nucleation of NaCl crystals from supersaturated aqueous solutions at 298 K and 1 bar. Nucleation rates were obtained for a rang