ترغب بنشر مسار تعليمي؟ اضغط هنا

Nucleation of Dislocations in 3.9 nm Nanocrystals at High Pressure

58   0   0.0 ( 0 )
 نشر من قبل Abhinav Parakh
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As circuitry approaches single nanometer length scales, it is important to predict the stability of metals at these scales. The behavior of metals at larger scales can be predicted based on the behavior of dislocations, but it is unclear if dislocations can form and be sustained at single nanometer dimensions. Here, we report the formation of dislocations within individual 3.9 nm Au nanocrystals under nonhydrostatic pressure in a diamond anvil cell. We used a combination of x-ray diffraction, optical absorbance spectroscopy, and molecular dynamics simulation to characterize the defects that are formed, which were found to be surface-nucleated partial dislocations. These results indicate that dislocations are still active at single nanometer length scales and can lead to permanent plasticity.



قيم البحث

اقرأ أيضاً

111 - F. Treussart , V. Jacques , E. Wu 2005
We used optical confocal microscopy to study optical properties of diamond 50 nm nanocrystals first irradiated with an electron beam, then dispersed as a colloidal solution and finally deposited on a silica slide. At room temperature, under CW laser excitation at a wavelength of 514.5 nm we observed perfectly photostable single Nitrogen-Vacancy (NV) colour defects embedded in the nanocrystals. From the zero-phonon line around 575 nm in the spectrum of emitted light, we infer a neutral NV0 type of defect. Such nanoparticle with intrinsic fluorescence are highly promising for applications in biology where long-term emitting fluorescent bio-compatible nanoprobes are still missing.
We use our recently proposed accelerated dynamics algorithm (Tiwary & van de Walle, 2011) to calculate temperature and stress dependence of activation free energy for surface nucleation of dislocations in pristine Gold nanopillars under realistic loa ds. While maintaining fully atomistic resolution, we achieve the fraction of a second time-scale regime. We find that the activation free energy depends significantly on the driving force (stress or strain) and temperature, leading to very high activation entropies. We also perform compression tests on Gold nanopillars for strain rates varying between 7 orders of magnitudes, reaching as low as 10^3/s. Our calculations show the quantitative effects on the yield point of unrealistic strain-rate Molecular Dynamics calculations: we find that while the failure mechanism for <001> compression of Gold nanopillars remains the same across the entire strain-rate range, the elastic limit (defined as stress for nucleation of the first dislocation) depends significantly on the strain-rate. We also propose a new methodology that overcomes some of the limits in our original accelerated dynamics scheme (and accelerated dynamics methods in general). We lay out our methods in sufficient details so as to be used for understanding and predicting deformation mechanism under realistic driving forces for various problems.
202 - A. Singer , S. Hy , M. Zhang 2017
Defects and their interactions in crystalline solids often underpin material properties and functionality as they are decisive for stability, result in enhanced diffusion, and act as a reservoir of vacancies. Recently, lithium-rich layered oxides hav e emerged among the leading candidates for the next-generation energy storage cathode material, delivering 50 % excess capacity over commercially used compounds. Oxygen-redox reactions are believed to be responsible for the excess capacity, however, voltage fading has prevented commercialization of these new materials. Despite extensive research the understanding of the mechanisms underpinning oxygen-redox reactions and voltage fade remain incomplete. Here, using operando three-dimensional Bragg coherent diffractive imaging, we directly observe nucleation of a mobile dislocation network in nanoparticles of lithium-rich layered oxide material. Surprisingly, we find that dislocations form more readily in the lithium-rich layered oxide material as compared with a conventional layered oxide material, suggesting a link between the defects and the anomalously high capacity in lithium-rich layered oxides. The formation of a network of partial dislocations dramatically alters the local lithium environment and contributes to the voltage fade. Based on our findings we design and demonstrate a method to recover the original high voltage functionality. Our findings reveal that the voltage fade in lithium-rich layered oxides is reversible and call for new paradigms for improved design of oxygen-redox active materials.
Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under r educed condition of the Earths lower mantle. However, in icy gas giants as well as in exoplanets oxygen may be a more abundant constituent (Ref. 1,2). Here, using synchrotron x-ray diffraction in laser-heated diamond anvil cells, we show that MgO and oxygen react at pressures above 94 GPa and T = 2150 K with the formation of the theoretically predicted I4/mcm MgO2 (Ref.3). Raman spectroscopy detects the presence of a peroxide ion (O22-) in the synthesized material as well as in the recovered specimen. Likewise, energy-dispersive x-ray spectroscopy confirms that the recovered sample has higher oxygen content than pure MgO. Our finding suggests that MgO2 may substitute MgO in rocky mantles and rocky planetary cores under highly oxidizing conditions.
The state of a sample during crystal growth from high temperature solutions is not accessible in conventional furnace systems. An optimization of the growth parameters often requires arduous trial and error procedures in particular in case of novel m ulticomponent systems with unknown phase diagrams. Here we present a measurement technique based on lock-in amplification that allows for in-situ detection of the liquidus and solidus temperatures as well as structural phase transitions. A thin, metallic measurement wire is mounted in close vicinity to the melt. Characteristic anomalies in the time-dependent electrical resistivity of this wire allow for the detection of latent heat release without using a reference crucible. The method is implemented in a feedback furnace and enables an adjustment of the temperature profile based on the occurrence or absence of phase transitions. The absolute temperature serves as an additional source of information. Obtained phase transition temperatures are in good agreement with differential thermal analysis (DTA).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا