ﻻ يوجد ملخص باللغة العربية
We used optical confocal microscopy to study optical properties of diamond 50 nm nanocrystals first irradiated with an electron beam, then dispersed as a colloidal solution and finally deposited on a silica slide. At room temperature, under CW laser excitation at a wavelength of 514.5 nm we observed perfectly photostable single Nitrogen-Vacancy (NV) colour defects embedded in the nanocrystals. From the zero-phonon line around 575 nm in the spectrum of emitted light, we infer a neutral NV0 type of defect. Such nanoparticle with intrinsic fluorescence are highly promising for applications in biology where long-term emitting fluorescent bio-compatible nanoprobes are still missing.
Nanodiamond crystals containing single color centers have been grown by chemical vapor deposition (CVD). The fluorescence from individual crystallites was directly correlated with crystallite size using a combined atomic force and scanning confocal f
We report an experimental study of the longitudinal relaxation time ($T_1$) of the electron spin associated with single nitrogen-vacancy (NV) defects hosted in nanodiamonds (ND). We first show that $T_1$ decreases over three orders of magnitude when
We present investigations on single Ni/Si related color centers produced via ion implantation into single crystalline type IIa CVD diamond. Testing different ion dose combinations we show that there is an upper limit for both the Ni and the Si dose 1
As circuitry approaches single nanometer length scales, it is important to predict the stability of metals at these scales. The behavior of metals at larger scales can be predicted based on the behavior of dislocations, but it is unclear if dislocati
Fabrication of single nickel-nitrogen (NE8) defect centers in diamond by chemical vapor deposition is demonstrated. Under continuous-wave 745 nm laser excitation single defects were induced to emit single photon pulses at 797 nm with a linewidth of 1