ﻻ يوجد ملخص باللغة العربية
The exact solutions of the $D^{(1)}_3$ model (or the $so(6)$ quantum spin chain) with either periodic or general integrable open boundary conditions are obtained by using the off-diagonal Bethe Ansatz. From the fusion, the complete operator product identities are obtained, which are sufficient to enable us to determine spectrum of the system. Eigenvalues of the fused transfer matrices are constructed by the $T-Q$ relations for the periodic case and by the inhomogeneous $T-Q$ one for the non-diagonal boundary reflection case. The present method can be generalized to deal with the $D^{(1)}_{n}$ model directly.
The generic quantum $tau_2$-model (also known as Baxter-Bazhanov-Stroganov (BBS) model) with periodic boundary condition is studied via the off-diagonal Bethe Ansatz method. The eigenvalues of the corresponding transfer matrix (solutions of the recur
The $so(5)$ (i.e., $B_2$) quantum integrable spin chains with both periodic and non-diagonal boundaries are studied via the off-diagonal Bethe Ansatz method. By using the fusion technique, sufficient operator product identities (comparing to those in
Based on the inhomogeneous T-Q relation constructed via the off-diagonal Bethe Ansatz, a systematic method for retrieving the Bethe-type eigenstates of integrable models without obvious reference state is developed by employing certain orthogonal bas
The graded off-diagonal Bethe ansatz method is proposed to study supersymmetric quantum integrable models (i.e., quantum integrable models associated with superalgebras). As an example, the exact solutions of the $SU(2|2)$ vertex model with both peri
The quantum $tau_2$-model with generic site-dependent inhomogeneity and arbitrary boundary fields is studied via the off-diagonal Bethe Ansatz method. The eigenvalues of the corresponding transfer matrix are given in terms of an inhomogeneous T-Q rel