ترغب بنشر مسار تعليمي؟ اضغط هنا

Graded Off-diagonal Bethe ansatz solution of the $SU(2|2)$ spin chain model with generic integrable boundaries

218   0   0.0 ( 0 )
 نشر من قبل Jun-Peng Cao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The graded off-diagonal Bethe ansatz method is proposed to study supersymmetric quantum integrable models (i.e., quantum integrable models associated with superalgebras). As an example, the exact solutions of the $SU(2|2)$ vertex model with both periodic and generic open boundary conditions are constructed. By generalizing the fusion techniques to the supersymmetric case, a closed set of operator product identities about the transfer matrices are derived, which allows us to give the eigenvalues in terms of homogeneous or inhomogeneous $T-Q$ relations. The method and results provided in this paper can be generalized to other high rank supersymmetric quantum integrable models.



قيم البحث

اقرأ أيضاً

The generic quantum $tau_2$-model (also known as Baxter-Bazhanov-Stroganov (BBS) model) with periodic boundary condition is studied via the off-diagonal Bethe Ansatz method. The eigenvalues of the corresponding transfer matrix (solutions of the recur sive functional relations in $tau_j$-hierarchy) with generic site-dependent inhomogeneity parameters are given in terms of an inhomogeneous T-Q relation with polynomial Q-functions. The associated Bethe Ansatz equations are obtained. Numerical solutions of the Bethe Ansatz equations for small number of sites indicate that the inhomogeneous T-Q relation does indeed give the complete spectrum.
The $so(5)$ (i.e., $B_2$) quantum integrable spin chains with both periodic and non-diagonal boundaries are studied via the off-diagonal Bethe Ansatz method. By using the fusion technique, sufficient operator product identities (comparing to those in [1]) to determine the spectrum of the transfer matrices are derived. For the periodic case, we recover the results obtained in cite{NYReshetikhin1}, while for the non-diagonal boundary case, a new inhomogeneous $T-Q$ relation is constructed. The present method can be directly generalized to deal with the $so(2n+1)$ (i.e., $B_n$) quantum integrable spin chains with general boundaries.
Based on the inhomogeneous T-Q relation and the associated Bethe Ansatz equations obtained via the off-diagonal Bethe Ansatz, we construct the Bethe-type eigenstates of the SU(2)-invariant spin-s chain with generic non-diagonal boundaries by employing certain orthogonal basis of the Hilbert space.
The nested off-diagonal Bethe ansatz is generalized to study the quantum spin chain associated with the $SU_q(3)$ R-matrix and generic integrable non-diagonal boundary conditions. By using the fusion technique, certain closed operator identities amon g the fused transfer matrices at the inhomogeneous points are derived. The corresponding asymptotic behaviors of the transfer matrices and their values at some special points are given in detail. Based on the functional analysis, a nested inhomogeneous T-Q relations and Bethe ansatz equations of the system are obtained. These results can be naturally generalized to cases related to the $SU_q(n)$ algebra.
The off-diagonal Bethe ansatz method is generalized to the integrable model associated with the $sp(4)$ (or $C_2$) Lie algebra. By using the fusion technique, we obtain the complete operator product identities among the fused transfer matrices. These relations, together with some asymptotic behaviors and values of the transfer matrices at certain points, enable us to determine the eigenvalues of the transfer matrices completely. For the periodic boundary condition case, we recover the same $T-Q$ relations obtained via conventional Bethe ansatz methods previously, while for the off-diagonal boundary condition case, the eigenvalues are given in terms of inhomogeneous $T-Q$ relations, which could not be obtained by the conventional Bethe ansatz methods. The method developed in this paper can be directly generalized to generic $sp(2n)$ (i.e., $C_n$) integrable model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا