ترغب بنشر مسار تعليمي؟ اضغط هنا

Enriching BERT with Knowledge Graph Embeddings for Document Classification

124   0   0.0 ( 0 )
 نشر من قبل Malte Ostendorff
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we focus on the classification of books using short descriptive texts (cover blurbs) and additional metadata. Building upon BERT, a deep neural language model, we demonstrate how to combine text representations with metadata and knowledge graph embeddings, which encode author information. Compared to the standard BERT approach we achieve considerably better results for the classification task. For a more coarse-grained classification using eight labels we achieve an F1- score of 87.20, while a detailed classification using 343 labels yields an F1-score of 64.70. We make the source code and trained models of our experiments publicly available



قيم البحث

اقرأ أيضاً

Knowledge graphs suffer from sparsity which degrades the quality of representations generated by various methods. While there is an abundance of textual information throughout the web and many existing knowledge bases, aligning information across the se diverse data sources remains a challenge in the literature. Previous work has partially addressed this issue by enriching knowledge graph entities based on hard co-occurrence of words present in the entities of the knowledge graphs and external text, while we achieve soft augmentation by proposing a knowledge graph enrichment and embedding framework named Edge. Given an original knowledge graph, we first generate a rich but noisy augmented graph using external texts in semantic and structural level. To distill the relevant knowledge and suppress the introduced noise, we design a graph alignment term in a shared embedding space between the original graph and augmented graph. To enhance the embedding learning on the augmented graph, we further regularize the locality relationship of target entity based on negative sampling. Experimental results on four benchmark datasets demonstrate the robustness and effectiveness of Edge in link prediction and node classification.
154 - Zequn Sun , Muhao Chen , Wei Hu 2020
Capturing associations for knowledge graphs (KGs) through entity alignment, entity type inference and other related tasks benefits NLP applications with comprehensive knowledge representations. Recent related methods built on Euclidean embeddings are challenged by the hierarchical structures and different scales of KGs. They also depend on high embedding dimensions to realize enough expressiveness. Differently, we explore with low-dimensional hyperbolic embeddings for knowledge association. We propose a hyperbolic relational graph neural network for KG embedding and capture knowledge associations with a hyperbolic transformation. Extensive experiments on entity alignment and type inference demonstrate the effectiveness and efficiency of our method.
Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as textual sequences and propose a novel framework named Knowledge Graph Bidirectional Encoder Representations from Transformer (KG-BERT) to model these triples. Our method takes entity and relation descriptions of a triple as input and computes scoring function of the triple with the KG-BERT language model. Experimental results on multiple benchmark knowledge graphs show that our method can achieve state-of-the-art performance in triple classification, link prediction and relation prediction tasks.
Service manual documents are crucial to the engineering company as they provide guidelines and knowledge to service engineers. However, it has become inconvenient and inefficient for service engineers to retrieve specific knowledge from documents due to the complexity of resources. In this research, we propose an automated knowledge mining and document classification system with novel multi-model transfer learning approaches. Particularly, the classification performance of the system has been improved with three effective techniques: fine-tuning, pruning, and multi-model method. The fine-tuning technique optimizes a pre-trained BERT model by adding a feed-forward neural network layer and the pruning technique is used to retrain the BERT model with new data. The multi-model method initializes and trains multiple BERT models to overcome the randomness of data ordering during the fine-tuning process. In the first iteration of the training process, multiple BERT models are being trained simultaneously. The best model is then selected for the next phase of the training process with another two iterations and the training processes for other BERT models will be terminated. The performance of the proposed system has been evaluated by comparing with two robust baseline methods, BERT and BERT-CNN. Experimental results on a widely used Corpus of Linguistic Acceptability (CoLA) dataset have shown that the proposed techniques perform better than these baseline methods in terms of accuracy and MCC score.
92 - Weijie Liu , Peng Zhou , Zhe Zhao 2019
Pre-trained language representation models, such as BERT, capture a general language representation from large-scale corpora, but lack domain-specific knowledge. When reading a domain text, experts make inferences with relevant knowledge. For machine s to achieve this capability, we propose a knowledge-enabled language representation model (K-BERT) with knowledge graphs (KGs), in which triples are injected into the sentences as domain knowledge. However, too much knowledge incorporation may divert the sentence from its correct meaning, which is called knowledge noise (KN) issue. To overcome KN, K-BERT introduces soft-position and visible matrix to limit the impact of knowledge. K-BERT can easily inject domain knowledge into the models by equipped with a KG without pre-training by-self because it is capable of loading model parameters from the pre-trained BERT. Our investigation reveals promising results in twelve NLP tasks. Especially in domain-specific tasks (including finance, law, and medicine), K-BERT significantly outperforms BERT, which demonstrates that K-BERT is an excellent choice for solving the knowledge-driven problems that require experts.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا