ترغب بنشر مسار تعليمي؟ اضغط هنا

Limited-budget output consensus for descriptor multiagent systems with energy constraints

158   0   0.0 ( 0 )
 نشر من قبل Jianxiang Xi
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The current paper deals with limited-budget output consensus for descriptor multiagent systems with two types of switching communication topologies; that is, switching connected ones and jointly connected ones. Firstly, a singular dynamic output feedback control protocol with switching communication topologies is proposed on the basis of the observable decomposition, where an energy constraint is involved and protocol states of neighboring agents are utilized to derive a new two-step design approach of gain matrices. Then, limited-budget output consensus problems are transformed into asymptotic stability ones and a valid candidate of the output consensus function is determined. Furthermore, sufficient conditions for limited-budget output consensus design for two types of switching communication topologies are proposed, respectively. Finally, two numerical simulations are shown to demonstrate theoretical conclusions.

قيم البحث

اقرأ أيضاً

137 - Daniel E. OLeary 2013
Models of consensus are used to manage multiple agent systems in order to choose between different recommendations provided by the system. It is assumed that there is a central agent that solicits recommendations or plans from other agents. That agen t the n determines the consensus of the other agents, and chooses the resultant consensus recommendation or plan. Voting schemes such as this have been used in a variety of domains, including air traffic control. This paper uses an analytic model to study the use of consensus in multiple agent systems. The binomial model is used to study the probability that the consensus judgment is correct or incorrect. That basic model is extended to account for both different levels of agent competence and unequal prior odds. The analysis of that model is critical in the investigation of multiple agent systems, since the model leads us to conclude that in some cases consensus judgment is not appropriate. In addition, the results allow us to determine how many agents should be used to develop consensus decisions, which agents should be used to develop consensus decisions and under which conditions the consensus model should be used.
157 - Yutao Tang 2020
This paper investigates an optimal consensus problem for a group of uncertain linear multi-agent systems. All agents are allowed to possess parametric uncertainties that range over an arbitrarily large compact set. The goal is to collectively minimiz e a sum of local costs in a distributed fashion and finally achieve an output consensus on this optimal point using only output information of agents. By adding an optimal signal generator to generate the global optimal point, we convert this problem to several decentralized robust tracking problems. Output feedback integral control is constructively given to achieve an optimal consensus under a mild graph connectivity condition. The efficacy of this control is verified by a numerical example.
This paper provides a protocol to address the robust output feedback consensus problem for networked heterogeneous nonlinear negative-imaginary (NI) systems with free body dynamics. We extend the definition of nonlinear NI systems to allow for system s with free body motion. A new stability result is developed for the interconnection of a nonlinear NI system and a nonlinear output strictly negative-imaginary (OSNI) system. Also, a class of networked nonlinear OSNI controllers is proposed to achieve output feedback consensus for heterogeneous networked nonlinear NI systems. We show that in this control framework, the system outputs converge to the same limit trajectory. This consensus protocol is illustrated by a numerical example.
237 - Yutao Tang , Hao Zhu , Xiaoyong Lv 2020
In this paper, an optimal output consensus problem is studied for discrete-time linear multiagent systems subject to external disturbances. Each agent is assigned with a local cost function which is known only to itself. Distributed protocols are to be designed to guarantee an output consensus for these high-order agents and meanwhile minimize the aggregate cost as the sum of these local costs. To overcome the difficulties brought by high-order dynamics and external disturbances, we develop an embedded design and constructively present a distributed rule to solve this problem. The proposed control includes three terms: an optimal signal generator under a directed information graph, an observer-based compensator to reject these disturbances, and a reference tracking controller for these linear agents. It is shown to solve the formulated problem with some mild assumptions. A numerical example is also provided to illustrate the effectiveness of our proposed distributed control laws.
In this paper, a cooperative Linear Quadratic Regulator (LQR) problem is investigated for multi-input systems, where each input is generated by an agent in a network. The input matrices are different and locally possessed by the corresponding agents respectively, which can be regarded as different ways for agents to control the multi-input system. By embedding a fully distributed information fusion strategy, a novel cooperative LQR-based controller is proposed. Each agent only needs to communicate with its neighbors, rather than sharing information globally in a network. Moreover, only the joint controllability is required, which allows the multi-input system to be uncontrollable for every single agent or even all its neighbors. In particular, only one-time information exchange is necessary at every control step, which significantly reduces the communication consumption. It is proved that the boundedness (convergence) of the controller gains is guaranteed for time-varying (time-invariant) systems. Furthermore, the control performance of the entire system is ensured. Generally, the proposed controller achieves a better trade-off between the control performance and the communication overhead, compared with the existing centralized/decentralized/consensus-based LQR controllers. Finally, the effectiveness of the theoretical results is illustrated by several comparative numerical examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا