ﻻ يوجد ملخص باللغة العربية
We present the anisotropic clustering of emission line galaxies (ELGs) from the Sloan Digital Sky Survey IV (SDSS-IV) extended Baryon Oscillation Spectroscopic Survey (eBOSS) Data Release 16 (DR16). Our sample is composed of 173,736 ELGs covering an area of 1170 deg$^2$ over the redshift range $0.6 leq z leq 1.1$. We use the Convolution Lagrangian Perturbation Theory in addition to the Gaussian Streaming Redshift-Space Distortions to model the Legendre multipoles of the anisotropic correlation function. We show that the eBOSS ELG correlation function measurement is affected by the contribution of a radial integral constraint that needs to be modelled to avoid biased results. To mitigate the effect from unknown angular systematics, we adopt a modified correlation function estimator that cancels out the angular modes from the clustering. At the effective redshift, $z_{rm eff}=0.85$, including statistical and systematical uncertainties, we measure the linear growth rate of structure $fsigma_8(z_{rm eff}) = 0.35pm0.10$, the Hubble distance $D_H(z_{rm eff})/r_{rm drag} = 19.1^{+1.9}_{-2.1}$ and the comoving angular diameter distance $D_M(z_{rm eff})/r_{rm drag} = 19.9pm1.0$. These results are in agreement with the Fourier space analysis, leading to consensus values of: $fsigma_8(z_{rm eff}) = 0.315pm0.095$, $D_H(z_{rm eff})/r_{rm drag} = 19.6^{+2.2}_{-2.1}$ and $D_M(z_{rm eff})/r_{rm drag} = 19.5pm1.0$, consistent with $Lambda$CDM model predictions with Planck parameters.
We analyse the large-scale clustering in Fourier space of emission line galaxies (ELG) from the Data Release 16 of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey. The ELG sample contains 173,736 galaxies covering 1,1
We present the Emission Line Galaxy (ELG) sample of the extended Baryon Oscillation Spectroscopic Survey (eBOSS) from the Sloan Digital Sky Survey IV Data Release 16 (DR16). After describing the observations and redshift measurement for the 269,243 o
We present a void clustering analysis in configuration-space using the completed Sloan Digital Sky Survey IV (SDSS-IV) extended Baryon Oscillation Spectroscopic Survey (eBOSS) DR16 samples. These samples consist of Luminous Red Galaxies (LRG) combine
We measure the anisotropic clustering of the quasar sample from Data Release 16 (DR16) of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey (eBOSS). A sample of $343,708$ spectroscopically confirmed quasars between reds
We measure the small-scale clustering of the Data Release 16 extended Baryon Oscillation Spectroscopic Survey Luminous Red Galaxy sample, corrected for fibre-collisions using Pairwise Inverse Probability weights, which give unbiased clustering measur