ترغب بنشر مسار تعليمي؟ اضغط هنا

Wolfenstein potentials for neutrinos induced by ultra-light mediators

76   0   0.0 ( 0 )
 نشر من قبل Xun-Jie Xu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

New physics can emerge at low energy scales, involving very light and very weakly interacting new particles. These particles can mediate interactions between neutrinos and usual matter and contribute to the Wolfenstein potential relevant for neutrino oscillations. We compute the Wolfenstein potential in the presence of ultra-light scalar and vector mediators and study the dependence of the potential on the mediator mass $m_A$, taking the finite size of matter distribution (Earth, Sun, supernovae) into consideration. For ultra-light mediators with $m_{A}^{-1}$ comparable to the size of the medium ($R$), the usual $m_{A}^{-2}$ dependence of the potential is modified. In particular, when $m_{A}^{-1}gg R$, the potential does not depend on $m_{A}$. Taking into account existing bounds on light mediators, we find that for the scalar case significant effects on neutrino propagation are not possible, while for the vector case large matter effects are allowed for $m_{A} in [2times10^{-17}$, $4times10^{-14}]$ eV and the gauge coupling $gsim 10^{-25}$.

قيم البحث

اقرأ أيضاً

Recently the XENON1T collaboration has released new results on searches for new physics in low-energy electronic recoils. The data shows an excess over background in the low-energy tail, particularly pronounced at about $2-3$ keV. With an exposure of $0.65$ tonne-year, large detection efficiency and energy resolution, the detector is sensitive as well to solar neutrino backgrounds, with the most prominent contribution given by $pp$ neutrinos. We investigate whether such signal can be explained in terms of new neutrino interactions with leptons mediated by a light vector particle. We find that the excess is consistent with this interpretation for vector masses below $lesssim 0.1$ MeV. The region of parameter space probed by the XENON1T data is competitive with constraints from laboratory experiments, in particular GEMMA, Borexino and TEXONO. However we point out a severe tension with astrophysical bounds and cosmological observations.
The strong coupling between intense laser fields and valence electrons in molecules causes a distortion of the potential energy hypersurfaces which determine the motion of nuclei in a molecule and influences possible reaction pathways. The coupling s trength varies with the angle between the light electric field and valence orbital, and thereby adds another dimension to the effective molecular potential energy surface, allowing for the emergence of light-induced conical intersections. Here, we demonstrate in theory and experiment that the full complexity of such light-induced potential energy surfaces can be uncovered. In H$_2^+$, the simplest of molecules, we observe a strongly modulated angular distribution of protons which has escaped prior observation. These modulations directly result from ultrafast dynamics on the light-induced molecular potentials and can be modified by varying the amplitude, duration and phase of the mid-infrared dressing field. This opens new opportunities for manipulating the dissociation of small molecules using strong laser fields.
We study the threshold production of two pions induced by neutrinos in nucleon targets. The contribution of nucleon pole, pion and contact terms is calculated using a chiral Lagrangian. The contribution of the Roper resonance, neglected in earlier studies, has also been taken into account.
A bevy of light dark matter direct detection experiments have been proposed, targeting spin-independent dark matter scattering. In order to be exhaustive, non-standard signatures that have been investigated in the WIMP window including spin-dependent dark matter scattering also need to be looked into in the light dark matter parameter space. In this work, we promote this endeavor by deriving indirect limits on sub-GeV spin-dependent dark matter through terrestrial and astrophysical limits on the forces that mediate this scattering.
79 - N. Klop , A. Palazzo 2014
We investigate the impact of light ($sim$ eV) sterile neutrinos in the long-baseline experiment T2K. We show that, within the 3+1 scheme, for mass-mixing parameters suggested by the short-baseline anomalies, the interference among the sterile and the atmospheric oscillation frequencies induces a new term in the $ u_mu to u_e$ transition probability, which has the same order of magnitude of the standard 3-flavor solar-atmospheric interference term. We show, for the first time, that current T2K data, taken together with the results of the $theta_{13}$-dedicated reactor experiments, are sensitive to two of the three CP-violating phases involved in the 3+1 scheme. Both the standard CP-phase and the new one ($delta_{13} equiv delta$ and $delta_{14}$ in our parameterization choice) tend to have a common best fit value $delta_{13} simeq delta_{14} simeq -pi/2$. Quite intriguingly, the inclusion of sterile neutrino effects leads to better agreement between the two estimates of $theta_{13}$ obtained, respectively, from reactors and T2K, which in the 3-flavor framework are slightly different.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا