ﻻ يوجد ملخص باللغة العربية
In this paper, we propose an AdaBoost-assisted extreme learning machine for efficient online sequential classification (AOS-ELM). In order to achieve better accuracy in online sequential learning scenarios, we utilize the cost-sensitive algorithm-AdaBoost, which diversifying the weak classifiers, and adding the forgetting mechanism, which stabilizing the performance during the training procedure. Hence, AOS-ELM adapts better to sequentially arrived data compared with other voting based methods. The experiment results show AOS-ELM can achieve 94.41% accuracy on MNIST dataset, which is the theoretical accuracy bound performed by an original batch learning algorithm, AdaBoost-ELM. Moreover, with the forgetting mechanism, the standard deviation of accuracy during the online sequential learning process is reduced to 8.26x.
Recent years, transfer learning has attracted much attention in the community of machine learning. In this paper, we mainly focus on the tasks of parameter transfer under the framework of extreme learning machine (ELM). Unlike the existing parameter
In this paper, we study Contextual Unsupervised Sequential Selection (USS), a new variant of the stochastic contextual bandits problem where the loss of an arm cannot be inferred from the observed feedback. In our setup, arms are associated with fixe
Recent theoretical work studies sample-efficient reinforcement learning (RL) extensively in two settings: learning interactively in the environment (online RL), or learning from an offline dataset (offline RL). However, existing algorithms and theori
Extreme Multi-label classification (XML) is an important yet challenging machine learning task, that assigns to each instance its most relevant candidate labels from an extremely large label collection, where the numbers of labels, features and insta
In this paper, we propose online algorithms for multiclass classification using partial labels. We propose two variants of Perceptron called Avg Perceptron and Max Perceptron to deal with the partial labeled data. We also propose Avg Pegasos and Max