ﻻ يوجد ملخص باللغة العربية
Rydberg-atom-enabled atomic vapor cell technologies show great potentials in developing devices for quantum enhanced sensors. In this paper, we demonstrate laser induced DC electric fields in an all-glass vapor cell without bulk or thin film electrodes. The spatial field distribution is mapped by Rydberg electromagnetically induced transparency spectroscopy. We explain the measured with a boundary-value electrostatic model. This work may inspire new ideas for DC electric field control in designing miniaturized atomic vapor cell devices. Limitations and other charge effects are also discussed.
We investigate the effects of static electric and magnetic fields on the differential ac Stark shifts for microwave transitions in ultracold bosonic $^{87}$Rb$^{133}$Cs molecules, for light of wavelength $lambda = 1064~mathrm{nm}$. Near this waveleng
The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D2 transitions in atomic rubidium is described. A 5 cm-long vapor cell is placed in a double-solenoid arrangement to produ
We use an atomic vapor cell as a frequency tunable microwave field detector operating at frequencies from GHz to tens of GHz. We detect microwave magnetic fields from 2.3 GHz to 26.4 GHz, and measure the amplitude of the sigma+ component of an 18 GHz
The observation of strongly interacting many-body phenomena in atomic gases typically requires ultracold samples. Here we show that the strong interaction potentials between Rydberg atoms enable the observation of many-body effects in an atomic vapor
We describe a simple strontium vapor cell for laser spectroscopy experiments. Strontium vapor is produced using an electrically heated commercial dispenser source. The sealed cell operates at room temperature, and without a buffer gas or vacuum pump.