ترغب بنشر مسار تعليمي؟ اضغط هنا

A heated vapor cell unit for DAVLL in atomic rubidium

226   0   0.0 ( 0 )
 نشر من قبل Daniel McCarron
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D2 transitions in atomic rubidium is described. A 5 cm-long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.



قيم البحث

اقرأ أيضاً

We demonstrate a high-performance coherent-population-trapping (CPT) Cs vapor cell atomic clock using the push-pull optical pumping technique (PPOP) in the pulsed regime, allowing the detection of high-contrast and narrow Ramsey-CPT fringes. The impa ct of several experimental parameters onto the clock resonance and short-term fractional frequency stability, including the laser power, the cell temperature and the Ramsey sequence parameters, has been investigated. We observe and explain the existence of a slight dependence on laser power of the central Ramsey-CPT fringe line-width in the pulsed regime. We report also that the central fringe line-width is commonly narrower than the expected Ramsey line-width given by $1/(2T_R)$, with $T_R$ the free-evolution time, for short values of $T_R$. The clock demonstrates a short-term fractional frequency stability at the level of $2.3 times 10^{-13}~tau^{-1/2}$ up to 100 seconds averaging time, mainly limited by the laser AM noise. Comparable performances are obtained in the conventional continuous (CW) regime, if use of an additional laser power stabilization setup. The pulsed interaction allows to reduce significantly the clock frequency sensitivity to laser power variations, especially for high values of $T_R$. This pulsed CPT clock, ranking among the best microwave vapor cell atomic frequency standards, could find applications in telecommunication, instrumentation, defense or satellite-based navigation systems.
We use an atomic vapor cell as a frequency tunable microwave field detector operating at frequencies from GHz to tens of GHz. We detect microwave magnetic fields from 2.3 GHz to 26.4 GHz, and measure the amplitude of the sigma+ component of an 18 GHz microwave field. Our proof-of-principle demonstration represents a four orders of magnitude extension of the frequency tunable range of atomic magnetometers from their previous dc to several MHz range. When integrated with a high resolution microwave imaging system, this will allow for the complete reconstruction of the vector components of a microwave magnetic field and the relative phase between them. Potential applications include near-field characterisation of microwave circuitry and devices, and medical microwave sensing and imaging.
We report modulation transfer spectroscopy on the D2 transitions in 85Rb and 87Rb using a simple home-built electro-optic modulator (EOM). We show that both the gradient and amplitude of modulation transfer spectroscopy signals, for the 87Rb F=2 to F =3 and the 85Rb F=3 to F=4 transitions, can be significantly enhanced by expanding the beams, improving the signals for laser frequency stabilization. The signal gradient for these transitions is increased by a factor of 3 and the peak to peak amplitude was increased by a factor of 2. The modulation transfer signal for the 85Rb F=2 to F transitions is also presented to highlight how this technique can generate a single, clear line for laser frequency stabilization even in cases where there are a number of closely spaced hyperfine transitions.
Using the z-scan technique, we have measured the self-induced absorptive and refractive nonlinear behavior of hot atomic rubidium vapor within the Doppler profile of the D2 line. We observe large nonlinear amplitude and phase effects with only tens o f microwatts of incident power. Our results are in good agreement with numerical calculations based on an analytic model of a Doppler- broadened two-level system.
We describe a simple strontium vapor cell for laser spectroscopy experiments. Strontium vapor is produced using an electrically heated commercial dispenser source. The sealed cell operates at room temperature, and without a buffer gas or vacuum pump. The cell was characterised using laser spectroscopy, and was found to offer stable and robust operation, with an estimated lifetime of >10,000 hours. By changing the dispenser, this technique can be readily extended to other alkali and alkaline earth elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا