ترغب بنشر مسار تعليمي؟ اضغط هنا

A solution to the proplyd lifetime problem

108   0   0.0 ( 0 )
 نشر من قبل Andrew Winter
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Protoplanetary discs (PPDs) in the Orion Nebula Cluster (ONC) are irradiated by UV fields from the massive star $theta^1$C. This drives thermal winds, inducing mass loss rates of up to $dot{M}_mathrm{wind}sim 10^{-7},M_odot$/yr in the `proplyds (ionised PPDs) close to the centre. For the mean age of the ONC and reasonable initial PPD masses, such mass loss rates imply that discs should have been dispersed. However, ~80% of stars still exhibit a NIR excess, suggesting that significant circumstellar mass remains. This `proplyd lifetime problem has persisted since the discovery of photoevaporating discs in the core of the ONC by ODell & Wen (1994). In this work, we demonstrate how an extended period of star formation can solve this problem. Coupling N-body calculations and a viscous disc evolution model, we obtain high disc fractions at the present day. This is partly due to the migration of older stars outwards, and younger stars inwards such that the most strongly irradiated PPDs are also the youngest. We show how the disc mass distribution can be used to test the recent claims in the literature for multiple stellar populations in the ONC. Our model also explains the recent finding that host mass and PPD mass are only weakly correlated, in contrast with other regions of similar age. We conclude that the status of the ONC as the archetype for understanding the influence of environment on planet formation is undeserved; the complex star formation history (involving star formation episodes within ~0.8 Myr of the present day) results in confusing signatures in the PPD population.



قيم البحث

اقرأ أيضاً

We used new ALMA $^{13}$CO and C$^{18}$O(3-2) observations obtained at high angular resolution ($sim$0.2) together with previous CO(3-2) and (6-5) ALMA data and continuum maps at 1.3 and 0.8 mm in order to determine the gas properties (temperature, d ensity, and kinematics) in the cavity and to a lesser extent in the outer disk of GG Tau A, the prototype of a young triple T Tauri star that is surrounded by a massive and extended Keplerian outer disk. By deprojecting, we studied the radial and azimuthal gas distribution and its kinematics. We also applied a new method to improve the deconvolution of the CO data and in particular better quantify the emission from gas inside the cavity. We perform local and nonlocal thermodynamic equilibrium studies in order to determine the excitation conditions and relevant physical parameters inside the ring and in the central cavity. Residual emission after removing a smooth-disk model indicates unresolved structures at our angular resolution, probably in the form of irregular rings or spirals. The outer disk is cold, with a temperature $<20$ K beyond 250 au that drops quickly (r$^{-1}$). The kinematics of the gas inside the cavity reveals infall motions at about 10% of the Keplerian speed. We derive the amount of gas in the cavity, and find that the brightest clumps, which contain about 10% of this mass, have kinetic temperatures 40$-$80 K, CO column densities of a few 10$^{17}$ cm$^{-2}$, and H$_2$ densities around 10$^7$ cm$^{-3}$. Although the gas in the cavity is only a small fraction of the disk mass, the mass accretion rate throughout the cavity is comparable to or higher than the stellar accretion rate. It is accordingly sufficient to sustain the circumstellar disks on a long timescale.
We determine the response of a uniformly rotating star to tidal perturbations due to a companion. General periodic orbits and parabolic flybys are considered. We evaluate energy and angular momentum exchange rates as a sum of contributions from norma l modes allowing for dissipative processes. We consider the case when the response is dominated by the contribution of an identifiable regular spectrum of low frequency modes, such as gravity modes and evaluate it in the limit of very weak dissipation. Our formalism may be applied both to Sun-like stars with radiative cores and convective envelopes and to more massive stars with convective cores and radiative envelopes. We provide general expressions for transfer of energy and angular momentum valid for an orbit with any eccentricity. Detailed calculations are made for Sun-like stars in the slow rotation regime where centrifugal distortion is neglected in the equilibrium and the traditional approximation is made for the normal modes. We use both a WKBJ procedure and direct numerical evaluation which are found to be in good agreement for regimes of interest. Finally we use our formalism to determine the evolution time scales for an object, in an orbit of small eccentricity, around a Sun-like star in which the tidal response is assumed to occur. Systems with either no rotation or synchronous rotation are considered. Only rotationally modified gravity modes are taken into account under the assumption that wave dissipation occurs close to the stellar centre.
77 - Daniel J. Price 2020
We present a fix to the overdamping problem found by Laibe & Price (2012) when simulating strongly coupled dust-gas mixtures using two different sets of particles using smoothed particle hydrodynamics. Our solution is to compute the drag at the baryc entre between gas and dust particle pairs when computing the drag force by reconstructing the velocity field, similar to the procedure in Godunov-type solvers. This fixes the overdamping problem at negligible computational cost, but with additional memory required to store velocity derivatives. We employ slope limiters to avoid spurious oscillations at shocks, finding the van Leer Monotonized Central limiter most effective.
The investigation of the emergence of life is a major endeavour of science. Astronomy is contributing to it in three fundamental manners: (1) by measuring the chemical enrichment of the Universe, (2) by investigating planet formation and searching fo r exoplanets with signatures of life and, (3) by determining the abundance of aminoacids and the chemical routes to aminoacid and protein growth in astronomical bodies. This proposal deals with the first two. In the Voyage to 2050, the world-wide scientific community is getting equipped with large facilities for the investigation of the emergence of life in the Universe (i.e. VLT, JWST, ELT, GMT, TMT, ALMA, FAST, VLA, ATHENA, SKA) including the ESAs CHEOPS, PLATO and ARIEL missions. This white paper is a community effort to call for the development of a large ultraviolet optical observatory to gather fundamental data for this investigation that will not be accessible through other ranges of the electromagnetic spectrum. A versatile space observatory with UV sensitivity a factor of 50-100 greater than existing facilities will revolutionize our understanding of the pathway to life in the Universe.
Free neutrons have a measured lifetime of 880 s, but disagreement between existing laboratory measurements of ~10 s have persisted over many years. This uncertainty has implications for multiple physics disciplines, including standard-model particle physics and Big-Bang nucleosynthesis. Space-based neutron lifetime measurements have been shown to be feasible using existing data taken at Venus and the Moon, although the uncertainties for these measurements of tens of seconds prevent addressing the current lifetime discrepancy. We investigate the implementation of a dedicated space-based experiment that could provide a competitive and independent lifetime measurement. We considered a variety of scenarios, including measurements made from orbit about the Earth, Moon, and Venus, as well as on the surface of the Moon. For a standard-sized neutron detector, a measurement with three-second statistical precision can be obtained from Venus orbit in less than a day; a one-second statistical precision can be obtained from Venus orbit in less than a week. Similarly precise measurements in Earth orbit and on the lunar surface can be acquired in less than 40 days (three-second precision) and ~300 days (one-second precision). Systematic uncertainties that affect a space-based neutron lifetime measurement are investigated, and the feasibility of developing such an experiment is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا