ترغب بنشر مسار تعليمي؟ اضغط هنا

Space-based Measurements of Neutron Lifetime: Approaches to Resolving the Neutron Lifetime Anomaly

224   0   0.0 ( 0 )
 نشر من قبل David Lawrence
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Free neutrons have a measured lifetime of 880 s, but disagreement between existing laboratory measurements of ~10 s have persisted over many years. This uncertainty has implications for multiple physics disciplines, including standard-model particle physics and Big-Bang nucleosynthesis. Space-based neutron lifetime measurements have been shown to be feasible using existing data taken at Venus and the Moon, although the uncertainties for these measurements of tens of seconds prevent addressing the current lifetime discrepancy. We investigate the implementation of a dedicated space-based experiment that could provide a competitive and independent lifetime measurement. We considered a variety of scenarios, including measurements made from orbit about the Earth, Moon, and Venus, as well as on the surface of the Moon. For a standard-sized neutron detector, a measurement with three-second statistical precision can be obtained from Venus orbit in less than a day; a one-second statistical precision can be obtained from Venus orbit in less than a week. Similarly precise measurements in Earth orbit and on the lunar surface can be acquired in less than 40 days (three-second precision) and ~300 days (one-second precision). Systematic uncertainties that affect a space-based neutron lifetime measurement are investigated, and the feasibility of developing such an experiment is discussed.



قيم البحث

اقرأ أيضاً

We establish the feasibility of measuring the neutron lifetime via an alternative, space-based class of methods, which use neutrons generated by galactic cosmic ray spallation of planets surfaces and atmospheres. Free neutrons decay via the weak inte raction with a mean lifetime of around 880 s. This lifetime constrains the unitarity of the CKM matrix and is a key parameter for studies of Big-Bang nucleosynthesis. However, current laboratory measurements, using two independent approaches, differ by over 4$sigma$. Using data acquired in 2007 and 2008 during flybys of Venus and Mercury by NASAs MESSENGER spacecraft, which was not designed to make this measurement, we estimate the neutron lifetime to be $780pm60_textrm{stat}pm70_textrm{syst}$ s, thereby demonstrating the viability of this new approach.
The results of measurements performed using UCN storing method are in good agreement. The latest most accurate measurements of the neutron decay asymmetry and neutron lifetime measurements by storage method are in agreement within the Standard Model. However, there is a significant discrepancy at $3.6sigma$ (1% of decay probability) level with beam method experiment. This article discusses the possible causes of discrepancy in the measurements of the neutron lifetime with beam method experiment. The most probable cause, apparently, is the loss of protons in beam method experiment during storage in a magnetic trap due to charge exchange collisions of protons with the residual gas. The proton becomes neutral and leaves the trap, which leads to a decrease in the number of registered protons, i.e. to a decrease in the probability of neutron decay or to an increase in the measured neutron lifetime.
110 - A. P. Serebrov 2019
The review of experimental measurements of neutron lifetime is presented. Latest measurements with gravitational trap (PNPI NRC KI) and magnetic trap (LANL, USA) confirmed the result obtained by PNPI group in 2005. The results of measurements perform ed using UCN storing method are in good agreement; however, there is a significant discrepancy at 3.6{sigma} (1% of decay probability) level with beam method experiment. The latest most accurate measurements of the neutron decay asymmetry and neutron lifetime measurements by storage method are in agreement within the Standard Model. This article discusses the possible causes of discrepancy in the measurements of the neutron lifetime. The most probable cause, apparently, is the loss of protons in beam method experiment during storage in a magnetic trap due to charge exchange collisions of protons with the residual gas. The proton becomes neutral and leaves the trap, which leads to a decrease in the number of registered protons, i.e. to a decrease in the probability of neutron decay or to an increase in the measured neutron lifetime.
Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before:the probability of UCN losses from the trap was only 1% of that for neutron beta decay. The neutron lifetime obtained,878.5+/-0.7stat+/-0.3sys s, is the most accurate experimental measurement to date.
We present the status of current US experimental efforts to measure the lifetime of the free neutron by the beam and bottle methods. BBN nucleosynthesis models require accurate measurements with 1 second uncertainties, which are currently feasible. F or tests of physics beyond the standard model, future efforts will need to achieve uncertainties well below 1 second. We outline paths achieve both.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا