ﻻ يوجد ملخص باللغة العربية
Despite deep convolutional neural networks great success in object classification, it suffers from severe generalization performance drop under occlusion due to the inconsistency between training and testing data. Because of the large variance of occluders, our goal is a model trained on occlusion-free data while generalizable to occlusion conditions. In this work, we integrate prototypes, partial matching and top-down attention regulation into deep neural networks to realize robust object classification under occlusion. We first introduce prototype learning as its regularization encourages compact data clusters, which enables better generalization ability under inconsistent conditions. Then, attention map at intermediate layer based on feature dictionary and activation scale is estimated for partial matching, which sifts irrelevant information out when comparing features with prototypes. Further, inspired by neuroscience research that reveals the important role of feedback connection for object recognition under occlusion, a top-down feedback attention regulation is introduced into convolution layers, purposefully reducing the contamination by occlusion during feature extraction stage. Our experiment results on partially occluded MNIST and vehicles from the PASCAL3D+ dataset demonstrate that the proposed network significantly improves the robustness of current deep neural networks under occlusion. Our code will be released.
Knowledge Distillation (KD) has been one of the most popu-lar methods to learn a compact model. However, it still suffers from highdemand in time and computational resources caused by sequential train-ing pipeline. Furthermore, the soft targets from
Frame reconstruction (current or future frame) based on Auto-Encoder (AE) is a popular method for video anomaly detection. With models trained on the normal data, the reconstruction errors of anomalous scenes are usually much larger than those of nor
Benefitting from insensitivity to light and high penetration of foggy environments, infrared cameras are widely used for sensing in nighttime traffic scenes. However, the low contrast and lack of chromaticity of thermal infrared (TIR) images hinder t
Few-shot classification aims to recognize unlabeled samples from unseen classes given only few labeled samples. The unseen classes and low-data problem make few-shot classification very challenging. Many existing approaches extracted features from la
Fully supervised object detection has achieved great success in recent years. However, abundant bounding boxes annotations are needed for training a detector for novel classes. To reduce the human labeling effort, we propose a novel webly supervised