ترغب بنشر مسار تعليمي؟ اضغط هنا

Composing Knowledge Graph Embeddings via Word Embeddings

291   0   0.0 ( 0 )
 نشر من قبل Zhiwei Lin
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning knowledge graph embedding from an existing knowledge graph is very important to knowledge graph completion. For a fact $(h,r,t)$ with the head entity $h$ having a relation $r$ with the tail entity $t$, the current approaches aim to learn low dimensional representations $(mathbf{h},mathbf{r},mathbf{t})$, each of which corresponds to the elements in $(h, r, t)$, respectively. As $(mathbf{h},mathbf{r},mathbf{t})$ is learned from the existing facts within a knowledge graph, these representations can not be used to detect unknown facts (if the entities or relations never occur in the knowledge graph). This paper proposes a new approach called TransW, aiming to go beyond the current work by composing knowledge graph embeddings using word embeddings. Given the fact that an entity or a relation contains one or more words (quite often), it is sensible to learn a mapping function from word embedding spaces to knowledge embedding spaces, which shows how entities are constructed using human words. More importantly, composing knowledge embeddings using word embeddings makes it possible to deal with the emerging new facts (either new entities or relations). Experimental results using three public datasets show the consistency and outperformance of the proposed TransW.

قيم البحث

اقرأ أيضاً

Knowledge graph embeddings are now a widely adopted approach to knowledge representation in which entities and relationships are embedded in vector spaces. In this chapter, we introduce the reader to the concept of knowledge graph embeddings by expla ining what they are, how they can be generated and how they can be evaluated. We summarize the state-of-the-art in this field by describing the approaches that have been introduced to represent knowledge in the vector space. In relation to knowledge representation, we consider the problem of explainability, and discuss models and methods for explaining predictions obtained via knowledge graph embeddings.
Much of biomedical and healthcare data is encoded in discrete, symbolic form such as text and medical codes. There is a wealth of expert-curated biomedical domain knowledge stored in knowledge bases and ontologies, but the lack of reliable methods fo r learning knowledge representation has limited their usefulness in machine learning applications. While text-based representation learning has significantly improved in recent years through advances in natural language processing, attempts to learn biomedical concept embeddings so far have been lacking. A recent family of models called knowledge graph embeddings have shown promising results on general domain knowledge graphs, and we explore their capabilities in the biomedical domain. We train several state-of-the-art knowledge graph embedding models on the SNOMED-CT knowledge graph, provide a benchmark with comparison to existing methods and in-depth discussion on best practices, and make a case for the importance of leveraging the multi-relational nature of knowledge graphs for learning biomedical knowledge representation. The embeddings, code, and materials will be made available to the communitY.
Learning knowledge graph (KG) embeddings has received increasing attention in recent years. Most embedding models in literature interpret relations as linear or bilinear mapping functions to operate on entity embeddings. However, we find that such re lation-level modeling cannot capture the diverse relational structures of KGs well. In this paper, we propose a novel edge-centric embedding model TransEdge, which contextualizes relation representations in terms of specific head-tail entity pairs. We refer to such contextualized representations of a relation as edge embeddings and interpret them as translations between entity embeddings. TransEdge achieves promising performance on different prediction tasks. Our experiments on benchmark datasets indicate that it obtains the state-of-the-art results on embedding-based entity alignment. We also show that TransEdge is complementary with conventional entity alignment methods. Moreover, it shows very competitive performance on link prediction.
We propose a distance supervised relation extraction approach for long-tailed, imbalanced data which is prevalent in real-world settings. Here, the challenge is to learn accurate few-shot models for classes existing at the tail of the class distribut ion, for which little data is available. Inspired by the rich semantic correlations between classes at the long tail and those at the head, we take advantage of the knowledge from data-rich classes at the head of the distribution to boost the performance of the data-poor classes at the tail. First, we propose to leverage implicit relational knowledge among class labels from knowledge graph embeddings and learn explicit relational knowledge using graph convolution networks. Second, we integrate that relational knowledge into relation extraction model by coarse-to-fine knowledge-aware attention mechanism. We demonstrate our results for a large-scale benchmark dataset which show that our approach significantly outperforms other baselines, especially for long-tail relations.
154 - Zequn Sun , Muhao Chen , Wei Hu 2020
Capturing associations for knowledge graphs (KGs) through entity alignment, entity type inference and other related tasks benefits NLP applications with comprehensive knowledge representations. Recent related methods built on Euclidean embeddings are challenged by the hierarchical structures and different scales of KGs. They also depend on high embedding dimensions to realize enough expressiveness. Differently, we explore with low-dimensional hyperbolic embeddings for knowledge association. We propose a hyperbolic relational graph neural network for KG embedding and capture knowledge associations with a hyperbolic transformation. Extensive experiments on entity alignment and type inference demonstrate the effectiveness and efficiency of our method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا