ﻻ يوجد ملخص باللغة العربية
High-$T_{rm C}$ superconductors show anomalous transport properties in their normal states, such as the bad-metal and pseudogap behaviors. To discuss their origins, it is important to speculate whether these behaviors are material-dependent or universal phenomena in the proximity of the Mott transition, by investigating similar but different material systems. An organic Mott transistor is suitable for this purpose owing to the adjacency between the two-dimensional Mott insulating and superconducting states, simple electronic properties, and high doping/bandwidth tunability in the same sample. Here we report the temperature dependence of the transport properties under electron and hole doping in an organic Mott electric-double-layer transistor. At high temperatures, the bad-metal behavior widely appears except at half filling regardless of the doping polarity. At lower temperatures, the pseudogap behavior is observed only under hole doping, while the Fermi-liquid-like behavior is observed under electron doping. The bad-metal behavior seems a universal high-energy scale phenomenon, while the pseudogap behavior is based on lower energy scale physics that can be influenced by details of the band structure.
We report measurements of the bulk magnetic susceptibility and ^{29}Si nuclear magnetic resonance (NMR) linewidth in the heavy-fermion alloy CeRhRuSi_2. The linewidth increases rapidly with decreasing temperature and reaches large values at low tempe
In this paper we study the low temperature behaviors of a system of Bose-Fermi mixtures at two dimensions. Within a self-consistent ladder diagram approximation, we show that at nonzero temperatures $Trightarrow0$ the fermions exhibit non-fermi liqui
Muon spin rotation experiments on a stoichiometric sample of the non-Fermi liquid (NFL) heavy-fermion compound UCu_4Pd, in which recent neutron Bragg scattering measurements are consistent with an ordered structure, indicate that the U-ion susceptibi
Triangular lattice quasi-two-dimensional Mott insulators based on BEDT-TTF molecule and its analogies present the largest group of spin liquid candidates on triangular lattice. It was shown theoretically that spin liquid state in these materials can
We use midinfrared pulses with stable carrier-envelope phase offset to drive molecular vibrations in the charge transfer salt ET-F2TCNQ, a prototypical one-dimensional Mott insulator. We find that the Mott gap, which is probed resonantly with 10 fs l