ﻻ يوجد ملخص باللغة العربية
A subset $S subset mathbb{F}_q^n$, where $mathbb{F}_q$ is a finite field, is called $(k,m)$-Furstenberg if it has $m$ common points with a $k$-flat in each direction. That is, any $k$-dimensional subspace of $mathbb{F}_q^n$ can be translated so that it intersects $S$ in at least $m$ points. Using sophisticated scheme-theoretic machinery, Ellenberg and Erman proved that $(k,m)$-Furstenberg sets must have size at least $C_{n,k}m^{n/k}$ with a constant $C_{n,k}$ depending only $n$ and $k$. In this work we follow the overall proof strategy of Ellenberg-Erman, replacing the scheme-theoretic language with more elementary machinery. In addition to presenting the proof in a self-contained and accessible form, we are also able to improve the constant $C_{n,k}$ by modifying certain key parts of the argument.
A $(k,m)$-Furstenberg set $S subset mathbb{F}_q^n$ over a finite field is a set that has at least $m$ points in common with a $k$-flat in every direction. The question of determining the smallest size of such sets is a natural generalization of the f
We give a new proof of a sumset conjecture of Furstenberg that was first proved by Hochman and Shmerkin in 2012: if $log r / log s$ is irrational and $X$ and $Y$ are $times r$- and $times s$-invariant subsets of $[0,1]$, respectively, then $dim_text{
Let $mathbb{F}_q$ be a finite field of order $q$, and $P$ be the paraboloid in $mathbb{F}_q^3$ defined by the equation $z=x^2+y^2$. A tuple $(a, b, c, d)in P^4$ is called a non-trivial energy tuple if $a+b=c+d$ and $a, b, c, d$ are distinct. For $Xsu
Motivated by integral point sets in the Euclidean plane, we consider integral point sets in affine planes over finite fields. An integral point set is a set of points in the affine plane $mathbb{F}_q^2$ over a finite field $mathbb{F}_q$, where the fo
In this paper, we study dot-product sets and $k$-simplices in vector spaces over finite rings. We show that if $E$ is sufficiently large then the dot-product set of $E$ covers the whole ring. In higher dimensional cases, if $E$ is sufficiently large