ترغب بنشر مسار تعليمي؟ اضغط هنا

Excitation efficiency and limitations of the luminescence of Eu3+ ions in GaN

59   0   0.0 ( 0 )
 نشر من قبل Dolf Timmerman
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The excitation efficiency and external luminescence quantum efficiency of trivalent Eu3+ ions doped into gallium nitride (GaN) was studied under optical and electrical excitation. For small pump fluences it was found that the excitation of Eu3+ ions is limited by an efficient carrier trap that competes in the energy transfer from the host material. For large pump fluences the limited number of high-efficiency Eu3+ sites, and the small excitation cross-section of the majority Eu3+ site, limit the quantum efficiency. At low temperatures under optimal excitation conditions, the external luminescence quantum efficiency reached a value of 46%. These results show the high potential for this material as an efficient light emitter, and demonstrates the importance of the excitation conditions on the light output efficiency.

قيم البحث

اقرأ أيضاً

Optically-detected magnetic resonance (ODMR) and positron annihilation spectroscopy (PAS) experiments have been employed to study magnesium-doped GaN layers grown by metal-organic vapor phase epitaxy. As the Mg doping level is changed, the combined e xperiments reveal a strong correlation between the vacancy concentrations and the intensity of the red photoluminescence band at 1.8 eV. The analysis provides strong evidence that the emission is due to recombination in which electrons both from effective mass donors and from deeper donors recombine with deep centers, the deep centers being vacancy-related defects.
The optical properties of a stack of GaN/AlN quantum discs (QDiscs) in a GaN nanowire have been studied by spatially resolved cathodoluminescence (CL) at the nanoscale (nanoCL) using a Scanning Transmission Electron Microscope (STEM) operating in spe ctrum imaging mode. For the electron beam excitation in the QDisc region, the luminescence signal is highly localized with spatial extension as low as 5 nm due to the high band gap difference between GaN and AlN. This allows for the discrimination between the emission of neighbouring QDiscs and for evidencing the presence of lateral inclusions, about 3 nm thick and 20 nm long rods (quantum rods, QRods), grown unintentionally on the nanowire sidewalls. These structures, also observed by STEM dark-field imaging, are proven to be optically active in nanoCL, emitting at similar, but usually shorter, wavelengths with respect to most QDiscs.
The spectral--kinetic characteristics of a ZnO:Ga single crystal upon excitation in the vacuum UV region have been studied. At a temperature of 8 K, the exciton luminescence line peaking at 3.356 eV has an extremely small half-width (7.2 meV) and a s hort decay time (360 ps). In the visible range, a wide luminescence band peaking at ~2.1 eV with a long luminescence time at 8 K and a decay time in the nanosecond range at 300 K is observed. The luminescence excitation spectra of ZnO:Ga have been measured in the range from 4 to 12.5 eV
265 - S. Dhara , A. Datta , C. T. Wu 2004
Optical photoluminescence studies are performed in self-ion (Ga+)-implanted nominally doped n-GaN nanowires. A 50-keV Ga+ focused ion beam (FIB) in the fluence range of 1x1014 -2x10^16 ions cm^-2 is used for the irradiation process. A blueshift is ob served for the yellow luminescence (YL) band with increasing fluence. Donor-acceptor pair (DAP) model with emission involving shallow donor introduced by point-defect clusters related to nitrogen vacancies and probable deep acceptor created by gallium interstitial clusters is made responsible for the shift. High temperature annealing in nitrogen ambient restores the peak position of YL band by removing nitrogen vacancies.
We report data on the luminescence spectra associated with photochromic centers in X-ray irradiated calcium fluoride crystals doped with Lu ions. Irradiation in low energy photochromic centers absorption band excites emission, which can be identify w ith transitions into photochromic centers. Ab initio calculation of absorption spectrum of photochromic center agrees rather well with experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا