ﻻ يوجد ملخص باللغة العربية
We show that diffusion processes can be exploited to study the posterior contraction rates of parameters in Bayesian models. By treating the posterior distribution as a stationary distribution of a stochastic differential equation (SDE), posterior convergence rates can be established via control of the moments of the corresponding SDE. Our results depend on the structure of the population log-likelihood function, obtained in the limit of an infinite sample sample size, and stochastic perturbation bounds between the population and sample log-likelihood functions. When the population log-likelihood is strongly concave, we establish posterior convergence of a $d$-dimensional parameter at the optimal rate $(d/n)^{1/ 2}$. In the weakly concave setting, we show that the convergence rate is determined by the unique solution of a non-linear equation that arises from the interplay between the degree of weak concavity and the stochastic perturbation bounds. We illustrate this general theory by deriving posterior convergence rates for three concrete examples: Bayesian logistic regression models, Bayesian single index models, and over-specified Bayesian mixture models.
This paper introduces a new approach to the study of rates of convergence for posterior distributions. It is a natural extension of a recent approach to the study of Bayesian consistency. In particular, we improve on current rates of convergence for
We study the well-known problem of estimating a sparse $n$-dimensional unknown mean vector $theta = (theta_1, ..., theta_n)$ with entries corrupted by Gaussian white noise. In the Bayesian framework, continuous shrinkage priors which can be expressed
In this paper, we prove almost surely consistency of a Survival Analysis model, which puts a Gaussian process, mapped to the unit interval, as a prior on the so-called hazard function. We assume our data is given by survival lifetimes $T$ belonging t
We aim at estimating the invariant density associated to a stochastic differential equation with jumps in low dimension, which is for $d=1$ and $d=2$. We consider a class of jump diffusion processes whose invariant density belongs to some Holder spac
In this paper,we consider a macro approximation of the flow of a risk reserve, The process is observed at discrete time points. Because we cannot directly observe each jump time and size then we will make use of a technique for identifying the times