ﻻ يوجد ملخص باللغة العربية
In Dunfields catalog of the hyperbolic manifolds in the SnapPy census which are complements of L-space knots in $S^3$, we determine that $22$ have tunnel number $2$ while the remaining all have tunnel number $1$. Notably, these $22$ manifolds contain $9$ asymmetric L-space knot complements. Furthermore, using SnapPy and KLO we find presentations of these $22$ knots as closures of positive braids that realize the Morton-Franks-Williams bound on braid index. The smallest of these has genus $12$ and braid index $4$.
A knot k in a closed orientable 3-manifold is called nonsimple if the exterior of k possesses a properly embedded essential surface of nonnegative Euler characteristic. We show that if k is a nonsimple prime tunnel number one knot in a lens space M (
We give a new, conceptually simpler proof of the fact that knots in $S^3$ with positive L-space surgeries are fibered and strongly quasipositive. Our motivation for doing so is that this new proof uses comparatively little Heegaard Floer-specific mac
We show that the crossing number of a satellite knot is at least 10^{-13} times the crossing number of its companion knot.
We provide a new proof of the following results of H. Schubert: If K is a satellite knot with companion J and pattern L that lies in a solid torus T in which it has index k, then the bridge numbers satisfy the following: 1) The bridge number of K is
The Thurston norm of a 3-manifold measures the complexity of surfaces representing two-dimensional homology classes. We study the possible unit balls of Thurston norms of 3-manifolds $M$ with $b_1(M) = 2$, and whose fundamental groups admit presentat